
CMOR
version 3.2
Last generated: December 19, 2016

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Overview

Getting started (//)
CMOR API (//mydoc_cmor3_api/)
Acknowledgements (//acknowledgements/)

Installation
Anaconda (//mydoc_cmor3_conda/)
GitHub (//mydoc_cmor3_github/)

Examples
Python (//mydoc_cmor3_python/)
Fortran (//mydoc_cmor3_fortran/)
C (//mydoc_cmor3_c/)
Control Vocabulary (CMIP6) (//mydoc_cmor3_CV/)

Appendix
CMIP6 table Excerpt (//mydoc_cmip6_table_excerpt/)
CMIP6 required Global Attributes (//mydoc_cmip6_global_attributes/)
CMIP6 User Input (//mydoc_cmip6_user_input/)
Appendix A (//mydoc_appendix_A/)
Appendix B (//mydoc_appendix_B/)

Contact us!
Contact (//mydoc_contacts/)

//
http://mydoc_cmor3_api/
http://acknowledgements/
http://mydoc_cmor3_conda/
http://mydoc_cmor3_github/
http://mydoc_cmor3_python/
http://mydoc_cmor3_fortran/
http://mydoc_cmor3_c/
http://mydoc_cmor3_cv/
http://mydoc_cmip6_table_excerpt/
http://mydoc_cmip6_global_attributes/
http://mydoc_cmip6_user_input/
http://mydoc_appendix_a/
http://mydoc_appendix_b/
http://mydoc_contacts/

Getting started overview
Design Considerations and Overview
This document describes Version 3 of a software library called “Climate Model Output
Rewriter” (CMOR3)[1], written in C with access also provided via Fortran 90 and through
Python[2]. CMOR is used to produce CF-compliant[3] netCDF[4] files. The structure of the files
created by CMOR and the metadata they contain fulfill the requirements of many of the
climate community’s standard model experiments (which are referred to here as “MIPs”[5] and
include, for example, AMIP, PMIP, APE, and IPCC [DN1] scenario runs).
CMOR was not designed to serve as an all-purpose writer of CF-compliant netCDF files, but
simply to reduce the effort required to prepare and manage MIP model output. Although MIPs
encourage systematic analysis of results across models, this is only easy to do if the model
output is written in a common format with files structured similarly and with sufficient
metadata uniformly stored according to a common standard. Individual modeling groups store
their data in different ways, but if a group can read its own data, then it should easily be able
to transform the data, using CMOR, into the common format required by the MIPs. The
adoption of CMOR as a standard code for exchanging climate data will facilitate participation in
MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy
to prepare output for other MIPs.
CMOR output has the following characteristics:

• Each file contains a single primary output variable (along with coordinate/grid variables,
attributes and other metadata) from a single model and a single simulation (i.e., from a
single ensemble member of a single climate experiment). This method of structuring
model output best serves the needs of most researchers who are typically interested in
only a few of the many variables in the MIP databases. Data requests can be satisfied
by simply sending the appropriate file(s) without first extracting the individual field(s) of
interest.

• There is flexibility in specifying how many time slices (samples) are stored in a single
file. A single file can contain all the time-samples for a given variable and climate
experiment, or the samples can be distributed in a sequence of files.

• Much of the metadata written to the output files is defined in MIP-specific tables of
information, which in this document are referred to simply as “MIP tables”. These tables
are JSON files that can be read by CMOR and are typically made available from MIP web
sites. Because these tables contain much of the metadata that is useful in the MIP

context, they are the key to reducing the programming burden imposed on the
individual users contributing data to a MIP. Additional tables can be created as new MIPs
are born.

• For metadata, different MIPs may have different requirements, but these are
accommodated by CMOR, within the constraints of the CF convention and as specified
in the MIP tables.

• CMOR can rely on NetCDF4 See unidata web page  to write the output files and can
take advantage of its compression and chunking capabilities. In that case, compression
is controlled with the MIP tables using the shuffle, deflate and deflate_level attributes,
default values are respectively 0, 0 and 0(disable). It is worth noting that even when
using NetCDF4, CMOR3 still produces NETCDF4 CLASSIC formatted output. This allows
the file generated to be readable by any application that can read NetCDF3 provided
they are re-linked against NetCDF4. When using the NetCDF4 library it is also still
possible to write files that can be read through the NetCDF3 library by adding “_3” to
the appropriate cmor_setup argument (see below). Note: CMOR3 NOW output NetCDF3
files by default. For CMIP6, the NetCDF4/NC_CLASSIC_Model mode is used (and
chunking is not invoked, but shuffle and delfation can be invoke on-demand).

• CMOR also must be linked against the udunits2 library see http://www.unidata.ucar.edu/
software/udunits/ , which enables CMOR to check that the units attribute is correct[6].
Finally CMOR3 must also be linked against the uuid library see http://www.ossp.org/pkg/
lib/uuid  in order to produce a unique tracking number for each file.

Although the CMOR output adheres to a fairly rigid structure, there is considerable flexibility
allowed in the design of codes that write data through the CMOR functions. Depending on how
the source data are stored, one might want to structure a code to read and rewrite the data
through CMOR in several different ways. Consider, for example, a case where data are
originally stored in “history” files that contain many different fields, but a single time sample. If
one were to process several different fields through CMOR and one wanted to include many
time samples per file, then it would usually be more efficient to read all the fields from the
single input file at the same time, and then distribute them to the appropriate CMOR output
files, rather than to process all the time-samples for a single field and then move on to the
next field. If, however, the original data were stored already by field (i.e., one variable per file),
then it would make more sense to simply loop through the fields, one at a time. The user is
free to structure the conversion program in either of these ways (among others).
Converting data with CMOR typically involves the following steps (with the CMOR function
names given in parentheses):

• Initialize CMOR and specify where output will be written and how error messages will be
handled (cmor_setup).

http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/
http://www.unidata.ucar.edu/software/udunits/
http://www.ossp.org/pkg/lib/uuid
http://www.ossp.org/pkg/lib/uuid
http://www.ossp.org/pkg/lib/uuid

• Provide information directing where output should be placed and identifying the data
source, project name, experiment, etc. (cmor_dataset_json). User need to provide a
User Input CMOR file to define each attribute.

• Set any additional “dataset” (i.e. global) attributes (cmor_set_cur_dataset function).
Note that all CMIP6 attributes can also be defined in the CMOR input user JSON file
(cmor_dataset_json).

• Define the axes (i.e., the coordinate values) associated with each of the dimensions of
the data to be written and obtain “handles”, to be used in the next step, which uniquely
identify the axes (cmor_axis).

• In the case of non-Cartesian longitude-latitude grids or for “station data”, define the
grid and its mapping parameters (cmor_grid and cmor_set_grid_mapping)

• Define the variables to be written by CMOR, indicate which axes are associated with
each variable, and obtain “handles”, to be used in the next step, which uniquely
identify each variable (cmor_variable). For each variable defined, this function fills
internal table entries containing file attributes passed by the user or obtained from a
MIP table, along with coordinate variables and other related information. Thus, nearly
all of the file’s metadata is collected during this step.

• Write an array of data that includes one or more time samples for a defined variable
(cmor_write). This step will typically be repeated to output additional variables or to
append additional time samples of data.

• Close one or all files created by CMOR (cmor_close)
There is an additional function (cmor_zfactor), which enables one to define metadata
associated with dimensionless vertical coordinates.
CMOR was designed to reduce the effort required of those contributing data to various MIPs.
An important aim was to minimize any transformations that the user would have to perform on
their original data structures to meet the MIP requirements. Toward this end, the code allows
the following flexibility (with the MIP requirements obtained by CMOR from the appropriate MIP
table and automatically applied):

• The input data can be structured with dimensions in any order and with coordinate
values either increasing or decreasing monotonically; CMOR will rearrange them to
meet the MIP’s requirements before writing out the data.

• The input data and coordinate values can be provided in an array declared to be
whatever “type” is convenient for the user (e.g., in the case of coordinate data, the
user might pass type “real” values (32-bit floating-point numbers on most platforms)
even though the output will be written type double (64-bit IEEE floating-point); CMOR
will transform the data to the required type before writing.

• The input data can be provided in units different from what is required by a MIP. If those
units can be transformed to the correct units using the udunits (version 2) software (see
udunits)[http://www.unidata.ucar.edu/software/udunits/], then CMOR performs the
transformation before writing the data. Otherwise, CMOR will return an error. Time units
are handled via the built-in cdtime interface [7].

• So-called “scalar dimensions” (sometimes referred to as “singleton dimensions”) are
automatically inserted by CMOR. Thus, for example, the user can provide surface air
temperature (at 2 meters) as a function of longitude, latitude, and time, and CMOR
adds as a “coordinate” attribute the “height” dimension, consistent with the metadata
requirements of CF. If the model output does not conform to the MIP requirements (e.g.,
carries temperature at 1.5 m instead of 2 m), then the user can override the MIP table
specifications.

The code does not, however, include a capability to interpolate data, either in the vertical or
horizontally. If data originally stored on model levels, is supposed to be stored on standard
pressure levels, according to MIP specifications, then the user must interpolate before passing
the data to CMOR.
The output resulting from CMOR is “self-describing” and includes metadata summarized below,
organized by attribute type (global, coordinate, or variable attributes) and by its source
(specified by the user or in a MIP table, or generated by CMOR).
Global attributes typically provided by the MIP table or generated by CMOR:

• title, identification of the project, experiment, and table.
• Conventions, (‘CF-1.4’)
• history, any user-provided history along with a “timestamp” generated by CMOR and a

statement that the data conform to both the CF standards and those of a particular MIP.
• activity_id, scientific project that inspired this simulation (e.g., CMIP6)
• table_id, MIP table used to define variable.
• data_specs_version Base on the latest CMIP6-Datarequest latest database version.
• mip_era, define what cycle of CMIP dictates the experiment and data specificiation.
• experiment, a long name title for the experiment.
• realm(s) to which the variable belongs (e.g., ocean, land, atmosphere, etc.).
• tracking_id, a unique identification string generated by uuid, which is useful at least

within the ESG distributed data archive.
• cmor_version, version of the library used to generate the files.
• frequency, the approximate time-sampling interval for a time-series of data.

• creation_date, the date and time (UTZ) that the file was created.
• product, a descriptive string that distinguishes among various model data products.

Global attributes typically provided by the user in a call to a CMOR function:

• institution, identifying the modeling center contributing the output.
• institute_id, a shorter identifying name of the modeling center (which would be

appropriate for labeling plots in which results from many models might appear).
• source, identifying the model version that generated the output.
• contact, providing the name and email of someone responsible for the data
• source_id, an acronym that identifies the model used to generate the output.
• experiment_id, a short name for the experiment.
• history, providing an “audit trail” for the data, which will be supplemented with CMOR-

generated information described above.
• references, typically containing documentation of the model and the model simulation.
• comment, typically including initialization and spin-up information for the simulation.
• realization_index, an integer distinguishing among simulations that differ only from

different equally reasonable initial conditions. This number should be greater than or
equal to 1.

• initialization_index, an integer distinguishing among simulations that differ only in the
method of initialization. This number should be greater than or equal to 1.

• physics_index, an integer indicating which of several closely related physics versions of
a model produced the simulation.

• parent_experiment_id, a string indicating which experiment this branches from. For
CMIP6 this should match the short name of the parent experiment id.

• parent_experiment_rip, a string indicating which member of an ensemble of parent
experiment runs this simulation branched from.

• branch_time, time in parent experiment when this simulation started (in the units of the
parent experiment).

Note: additional global attributes can be added by the user via the
cmor_set_cur_dataset_attribute function (see below).
Coordinate attributes typically provided by a MIP table or generated by CMOR:

• standard_name, as defined in the CF standard name table.
• units, specifying the units for the coordinate variable.

• axis, indicating whether axis is of type x, y, z, t, or none of these.
• bounds, (when appropriate) indicating where the cell bounds are stored.
• positive, (when appropriate) indicating whether a vertical coordinate increases upward

or downward.
• formula_terms, (when appropriate) providing information needed to transform from a

dimensionless vertical coordinate to the actual location (e.g., from sigma-level to
pressure).

• Coordinate or grid mapping attributes typically provided by the user in a call to a CMOR
function:*

• calendar, (when appropriate) indicating the calendar type assumed by the model.
• grid_mapping_name and the names of various mapping parameters, when necessary to

describe grids other than lat-lon. See CF conventions at: (http://cf-pcmdi.llnl.gov/
documents/cf-conventions/1.1/cf-conventions.html#grid-mappings-and-projections)

• Variable attributes typically provided by a MIP table or generated by CMOR:*
• standard_name as defined in the CF standard name table.
• units, specifying the units for the variable.
• long_name, describing the variable and useful as a title on plots.
• missing_value and _FillValue, specifying how missing data will be identified.
• cell_methods, (when appropriate) typically providing information concerning calculation

of means or climatologies, which may be supplemented by information provided by the
user.

• cell_measures, when appropriate, indicates the names of the variables containing cell
areas and volumes.

• comment, providing clarifying information concerning the variable (e.g., whether
precipitation includes both liquid and solid forms of precipitation).

• history, indicating what CMOR has done to the user supplied data (e.g., transforming its
units or rearranging its order to be consistent with the MIP requirements)

• coordinates, (when appropriate) supplying either scalar (singleton) dimension
information or the name of the labels containing names of geographical regions.

• flag_values and flag_meanings

• modeling_realm, providing the realm associated to the variable (ocean, land, aerosol,
SeaIce, LandIce, …)

Variable attributes typically provided by the user in a call to a CMOR function:

• grid_mappingi

• original_name, containing the name of the variable as it is known at the user’s home
institution.i*

• original_units, the units of the data passed to CMOR.
• history, (when appropriate) information concerning processing of the variable prior to

sending it to CMOR. (This information may be supplemented by further history
information generated by CMOR.)

• comment, (when appropriate) providing miscellaneous information concerning the
variable, which will supplement any comment contained in the MIP table.

As is evident from the above summary of metadata, a substantial fraction of the information is
defined in the MIP tables, which explains why writing MIP output through CMOR is much easier
than writing data without the help of the MIP tables. Besides the attribute information, the MIP
tables also include information that controls the structure of the output and allows CMOR to
apply some rudimentary quality assurance checks. Among this ancillary information in the MIP
tables is the following:

• The direction each coordinate should be stored when it is output (i.e., either in order of
increasing or decreasing values). The user need not be concerned with this since, if
necessary, CMOR will reorder the coordinate values and the data.

• The acceptable values for coordinates (e.g., for a pressure coordinate axis, for example,
perhaps the WCRP standard pressure levels).

• The acceptable values for various arguments passed to CMOR functions (e.g.,
acceptable calendars, experiment i.d.’s, etc.)

• The “type” of each output array (whether real, double precision, or integer). The user
need not be concerned with this since, if necessary, CMOR will convert the data to the
specified type.

• The order of the dimensions for output arrays. The user need not be concerned with
this since, if necessary, CMOR will reorder the data consistent with the specified
dimension order.

• The normally applied values for “scalar dimensions” (i.e., “singleton dimensions”).
• The range of acceptable values for output arrays.
• The acceptable range for the spatial mean of the absolute value of all elements in

output arrays.
• The minimal global attributes required.

[1] CMOR is pronounced “C-more”, which suggests that CMOR should enable a wide
community of scientists to “see more” climate data produced by modeling centers around the
world. CMOR also reminds us of Ecinae Corianus, the revered ancient Greek scholar, known to
his friends as “Seymour”. Seymour spent much of his life translating into Greek nearly all the
existing climate data, which had originally been recorded on largely inscrutable hieroglyphic
and cuneiform tablets. His resulting volumes, organized in a uniform fashion and in a language
readable by the common scientists of the day, provided the basis for much subsequent
scholarly research. Ecinae Corianus was later indirectly honored by early inhabitants of the
British Isles who reversed the spelling of his name and used the resulting string of letters,
grouped differently, to form new words referring to the major elements of climate.
[2] CMOR1 was written in Fortran 90 with access also provided through Python.
[3] See http://www.cgd.ucar.edu/cms/eaton/cf-metadata
[4] See http://my.unidata.ucar.edu/content/software/netcdf/
[5] “MIP” is an acronym for “model intercomparison project”.
[6] CMOR1 was linked to an earlier version of the netCDF library and udunits was optional.
[7] Cdtime is now built into CMOR. Therefore linking against cdms is no longer necessary.

Preliminary notes
In the following, all arguments should be passed using keywords (to improve readability and
flexibility in ordering the arguments). Those arguments appearing below that are followed by
an equal sign may be optional and, if not passed by the user, are assigned the default value
that follows the equal sign. The information in a MIP-specific input table determines whether or
not an argument shown in brackets is optional or required, and the table provides MIP-specific
default values for some parameters. All arguments not in brackets and not followed by an
equal sign are always required.
Three versions of each function are shown below. The first one is for Fortran (green text) the
second for C (blue text), and the third for Python (orange text). In the following, text that
applies to only one of the coding languages appears in the appropriate color.
Some of the arguments passed to CMOR (e.g., names of variables and axes are only
unambiguously defined in the context of a specific CMOR table, and in the Fortran version of
the functions this is specified by one of the function arguments, whereas in the C and Python
versions it is specified through a call to cmor_load_table and cmor_set_table.

All functions are type “integer”. If a function results in an error, an “exception” will be raised in
the Python version (otherwise None will be returned), and in either the Fortran or C versions,
the error will be indicated by the integer returned by the function itself. In C an integer other
than 0 will be returned, and in Fortran errors will result in a negative integer (except in the
case of cmor_grid, which will return a positive integer).
If no error is encountered, some functions will return information needed by the user in
subsequent calls to CMOR. In almost all cases this information is indicated by the value of a
single integer that in Fortran and Python is returned as the value of the function itself, whereas
in C it is returned as an output argument). There are two cases in the Fortran version of CMOR,
however, when a string argument may be set by CMOR (cmor_close and
cmor_create_output_path). These are the only cases when the value of any of the Fortran
function’s arguments might be modified by CMOR.

CMOR Application program interface (API)
cmor_setup()
Fortran: error_flag = cmor_setup(inpath=’./’, netcdf_file_action=CMOR_PRESERVE,
set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile, create_subdirectories)
C: error_flag = cmor_setup(char *inpath, int *netcdf_file_action, int *set_verbosity, int
*exit_control, char *logfile, int *create_subdirectories)
Python: setup(inpath=’.’, netcdf_file_action=CMOR_PRESERVE, set_verbosity=CMOR_NORMAL,
exit_control=CMOR_NORMAL, logfile=None, create_subdirectories=1)
Description: Initialize CMOR, specify path to MIP table(s) that will be read by CMOR, specify
whether existing output files will be overwritten, and specify how error messages will be
handled
Arguments:

• [inpath] = a character string specifying the path to the directory where the needed
MIP-specific tables reside.

• [netcdf_file_action] = controls handling of existing netCDF files. If the value passed is
CMOR_REPLACE, a new file will be created; any existing file with the same name as the
one CMOR is trying to create will be overwritten. If the value is CMOR_APPEND, an
existing file will be appended; if the file does not exist, it will be created. If the value is
CMOR_PRESERVE, a new file will be created unless a file by the same name already
exists, in which case the program will error exit.[8] To generate a NetCDF file in the
“CLASSIC” NetCDF3 format, a “_3” should be appended to the above parameters (e.g.,
CMOR_APPEND would become CMOR_APPEND_3). To generate a NetCDF file in the
“CLASSIC” NetCDF4 format, a “_4” should be appended to the above parameters (e.g.,
CMOR_APPEND would become CMOR_APPEND_4), this allows the user to take
advantage of NetCDF4 compression and chunking capabilities. The default values (no
underscore) are aliased to the _3 values (satisfying the requirements of CMIP6).

• [set_verbosity] controls how informational messages and error messages generated
by CMOR are handled. If set_verbosity=CMOR_NORMAL, errors and warnings will be
sent to the standard error device (typically the user’s screen). If
verbosity=CMOR_QUIET, then only error messages will be sent (and warnings will be
suppressed).

• [exit_control] determines if errors will trigger program to exit:

• CMOR_EXIT_ON_MAJOR = stop only on critical error;
• CMOR_NORMAL = stop only if severe errors;
• CMOR_EXIT_ON_WARNING = stop even after minor errors detected.
• [logfile] where CMOR will write its messages – default is “standard error” (stderr).
• [create_subdirectories] do we want to create the correct path subdirectory structure

or simply dump the files wherever cmor_dataset will point to.
Returns upon success:

• Fortran: 0
• C: 0
• Python: None

cmor_dataset_json()
Fortran: cmor_dataset_json(filename)
C: cmor_dataset_json(char *name)
Python: dataset_json(name)
Description: This function provides information to CMOR that is common to all output files that
will be written. The “dataset” defined by this function refers to some or all of the output from a
single model simulation (i.e., output from a single realization of a single experiment from a
single model). Only one dataset can be defined at any time, but the dataset can be closed (by
calling cmor_close()), and then another dataset can be defined by calling cmor_dataset. Note
that after a new dataset is defined, all axes and variables must be defined; axes and variables
defined earlier are not associated with the new dataset.
Arguments:

• name: JSON file which contains all information needed by CMOR in the form of
key:value. Here is an example: cmorInput.json 

Returns upon success:
• Fortran: 0
• C: 0
• Python: 0

https://raw.githubusercontent.com/PCMDI/cmor/master/Test/test2.json
https://raw.githubusercontent.com/PCMDI/cmor/master/Test/test2.json

cmor_set_cur_dataset_attribute()
Fortran: error_flag = cmor_set_cur_dataset_attribute(name,value)
C: error_flag = cmor_set_cur_dataset_attribute(char *name, char *value, int optional)
Python: set_cur_dataset_attribute(name,value)
Description: Associate a global attribute with the current dataset. In CMIP5, this function can
be called to set, for example, “institute_id”, “initialization” and “physics”.
Arguments:

• name = name of the global attribute to set.
• value = character string containing the value of this attribute.
• optional = an argument that is ignored. (Internally, CMOR calls this function and needs

this argument.)
Returns upon success:

• Fortran: 0
• C: 0
• Python: None

cmor_get_cur_dataset_attribute()
Fortran: error_flag = cmor_get_cur_dataset_attribute(name,result)
C: error_flag = cmor_get_cur_dataset_attribute(char *name, char *result)
Python: result = get_cur_dataset_attribute(name)
Description: Retrieves a global attribute associated with the current dataset.
Arguments:

• name = name of the global attribute to retrieve.
• result = string (or pointer to a string), which is returned by the function and contains

the retrieved global attribute (not for Python).
Returns upon success:

• Fortran: 0
• C: 0

• Python: None

cmor_has_cur_dataset_attribute()
Fortran: error_flag = cmor_has_cur_dataset_attribute(name)
C: error_flag = cmor_has_cur_dataset_attribute(char *name)
Python: error_flag = has_cur_dataset_attribute(name)
Description: Determines whether a global attribute is associated with the current dataset.
Arguments:

• name = name of the global attribute of interest.
Returns:

• a negative integer if an error is encountered; otherwise returns 0.
• 0 upon success
• True if the attribute exists, False otherwise.

cmor_load_table()
Fortran: table_id = cmor_load_table(table)
C: error_flag = cmor_load_table(char *table, int *table_id)
Python: table_id = load_table(table)
Description: Loads a table and returns a “handle” (table_id) to use later when defining CMOR
components. CMOR will look for the table first following the path as specified by the “table”
argument passed to this function. If it doesn’t find a file there it will prepend the outpath
defined in calling cmor_dataset. If it still doesn’t find it, it will use the “prefix” where the library
CMOR is to be installed (from configure time) followed by share (e.g /usr/local/cmor/share). If it
stills fails an error will be raised.

cmor_set_table()
Fortran: cmor_set_table(table_id)
C: error_flag = cmor_set_table(int table_id)
Python: table_id = set_table(table_id)

Description: Sets the table referred to by table_id as the table to obtain needed information
when defining CMOR components (variables, axes, grids, etc…).

cmor_axis()
Fortran: axis_id = cmor_axis([table], table_entry, units, [length], [coord_vals], [cell_bounds],
[interval])
C: error_flag = cmor_axis(int *axis_id, char *table_entry, char *units, int length, void
*coord_vals, char type, void *cell_bounds, int cell_bounds_ndim, char *interval)
Python: axis_id = axis(table_entry, length=??, coord_vals=None, units=None,
cell_bounds=None, interval=None)
Description: Define an axis and pass the coordinate values associated with one of the
dimensions of the data to be written. This function returns a “handle” (axis_id) that uniquely
identifies the axis to be written. The axis_id will subsequently be passed by the user to other
CMOR functions. The cmor_axis function will typically be repeatedly invoked to define all axes.
The axis specified by the table_entry argument must be found in the currently “set” CMOR
table, as specified by the cmor_load_table and cmor_set_table functions, or as an option, it can
be provided in the Fortran version (for backward compatibility) by the now deprecated “table”
keyword argument. There normally is no need to call this function in the case of a singleton
(scalar) dimension unless the MIP recommended (or required) coordinate value (or
cell_bounds) are inconsistent with what the user can supply, or unless the user wants to define
the “interval” attribute.
Arguments:

• [table] = character string containing the filename of the MIP-specific table where the
axis defined here appears. (e.g., ‘CMIP5_table_Amon’, ‘IPCC_table_A1’, ‘AMIP_table_1a’,
‘AMIP_table_2’, ‘CMIP_table_2’, etc.). In CMOR2 this is an optional argument and is
deprecated because the table can be specified through the cmor_load_table and
cmor_set_table functions.

• axis_id = the “handle”: a positive integer returned by CMOR, which uniquely identifies
the axis stored in this call to cmor_axis and subsequently can be used in calls to
cmor_write.

• table_entry = name of the axis (as it appears in the MIP table) that will be defined by
this function. units = units associated with the coordinates passed in coord_vals and
cell_bounds. (These are the units of the user’s coordinate values, which, if CMOR is built
with udunits (as is required in version 2), may differ from the units of the coordinates
written to the netCDF file by CMOR. For non-standard calendars (e.g., models with no
leap year), conversion of time values can be made only if CMOR is built with CDMS.)
These units must be recognized by udunits or must be identical to the units specified in

the MIP table. In the case of a dimensionless vertical coordinate or in the case of a non-
numerical axis (like geographical region), either set units=’none’, or, optionally, set
units=’1’.

• [length] = integer specifying the number of elements that CMOR should extract from
the coord_vals array (normally length will be the size of the array itself). For a simple
“index axis” (i.e., an axis without coordinate values), this specifies the length of the
dimension. In the Fortran and Python versions of the function, this argument is not
always required (except in the case of a simple index axis); if omitted “length” will be
the size of the coord_vals array,

• [coord_vals] = 1-d array (single precision float, double precision float, or, for labels,
character strings) containing coordinate values, ordered consistently with the data
array that will be passed by the user to CMOR through function cmor_write (see
documentation below). This argument is required except if: 1) the axis is a simple
“index axis” (i.e., an axis without coordinate values), or 2) for a time coordinate, the
user intends to pass the coordinate values when the cmor_write function is called. Note
that the coordinate values must be ordered monotonically, so, for example, in the case
of longitudes that might have the values, 0., 10., 20, … 170., 180., 190., 200., … 340.,
350., passing the (equivalent) values, 0., 10., 20, … 170., 180., -170., -160., … -20., -10.
is forbidden. In the case of time-coordinate values, if cell bounds are also passed, then
CMOR will first check that each coordinate value is not outside its associated cell
bounds; subsequently, however, the user-defined coordinate value will be replaced by
the mid-point of the interval defined by its bounds, and it is this value that will be
written to the netCDF file. In the case of character string coord_vals there are no
cell_bounds, but for the C version of the function, the argument cell_bounds_ndim is
used to specify the length of the strings in the coord_val array (i.e., the array will be
dimensioned [length][cell_bounds_ndim]).

• type = type of the coord_vals/bnds passed, which can be ‘d’ (double), ‘f’ (float), ‘l’
(long) or ‘i’ (int).

• [cell_bounds] = 1-d or 2-d array (of the same type as coord_vals) containing cell
bounds, which should be in the same units as coord_vals (specified in the “units”
argument above) and should be ordered in the same way as coord_vals. In the case of a
1-d array, the size is one more than the size of coord_vals and the cells must be
contiguous. In the case of a 2-d array, it is dimensioned (2, n) where n is the size of
coord_vals (see CF standard document, http://www.cgd.ucar.edu/cms/eaton/cf-
metadata, for further information). This argument may be omitted when cell bounds are
not required. It must be omitted if coord_vals is omitted.

• cell_bounds_ndim = This argument only appears in the the C version of this function.
Except in the case of a character string axis, it specifies the rank of the cell_bounds
array: if 1, the bounds array will contain n+1 elements, where n is length of coords and

the cells must be contiguous, whereas if 2, the dimension will be (n,2) in C order. Pass 0
if no cell_bounds values have been passed. In the special case of a character string
axis, this argument is used to specify the length of the strings in the coord_val array
(i.e., the array will be dimensioned [length] [cell_bounds_ndim]).

• [interval] = Supplemental information that will be included in the cell_methods
attribute, which is typically defined for the time axis in order to describe the sampling
interval. This string should be of the form: “value unit comment: anything” (where
“comment:” and anything may always be omitted). For monthly mean data sampled
every 15 minutes, for example, interval = “15 minutes”.

Returns:
• Fortran: a negative integer if an error is encountered; otherwise returns a positive

integer (the “handle”) uniquely identifying the axis ..
• C: 0 upon success.
• Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or

if an error is encountered an exception is raised.

cmor_grid()
Fortran: grid_id = cmor_grid(axis_ids, latitude, longitude, [latitude_vertices],
[longitude_vertices], [area])
C: error_flag = cmor_grid(int *grid_id, int ndims, int *axis_ids, char type, void *latitude, void
*longitude, int nvertices, void *latitude_vertices, void *longitude_vertices, void *area)
Python: grid_id = grid(axis_ids, latitude, longitude, latitude_vertices=None,
longitude_vertices=None, area=None)
Description: Define a grid to be associated with data, including the latitude and longitude
arrays. The grid can be structured with up to 6 dimensions. These dimensions, which may be
simple “index” axes, must be defined via cmor_axis prior to calling cmor_grid. This function
returns a “handle” (grid_id) that uniquely identifies the grid (and its data/metadata) to be
written. The grid_id will subsequently be passed by the user to other CMOR functions. The
cmor_grid function will typically be invoked to define each grid necessary for the experiment
(e.g ocean grid, vegetation grid, atmosphere grid, etc…). There is no need to call this function
in the case of a Cartesian lat/lon grid. In this case, simply define the latitude and longitude
axes and pass their id’s (“handles”) to cmor_variable.
Arguments:

• grid_id = the “handle”: a positive integer returned by CMOR, which uniquely identifies
the grid defined in this call to CMOR and subsequently can be used in calls to CMOR.

• ndims = number of dimensions needed to define the grid. Namely the number of
elements from axis_ids that will be used.

• axis_ids = array containing the axis_s returned by cmor_axis when defining the axes
constituing the grid.

• latitude = array containing the grid’s latitude information (ndim dimensions)
• longitude = array containing the grid’s longitude information (ndim dimensions)
• [latitude_vertices] = array containing the grid’s latitude vertices information

(ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of
the array (i.e first one in Fortran, last one in C, last one in Python)

• [longitude_vertices] = array containing the grid’s longitude vertices information
(ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of
the array (i.e first one in Fortran, last one in C, last one in Python)

• [area] = array containing the grid’s area information (ndim)
Returns:

• Fortran: a positive integer if an error is encountered; otherwise returns a negative
integer (the “handle”) uniquely identifying the grid.

• C: 0 upon success.
• Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or

if an error is encountered an exception is raised.

cmor_set_grid_mapping()
Fortran: error_flag = cmor_set_grid_mapping(grid_id, mapping_name, parameter_names,
parameter_values, parameter_units)
C: error_flag = cmor_set_grid_mapping(int grid_id, char *mapping_name, int nparameters, char
**parameter_names, int lparameters, double parameter_values[], char **parameter_units, int
lunits)
Python: set_grid_mapping(grid_id, mapping_name, parameter_names,
parameter_values=None, parameter_units=None)
Description: Define the grid mapping parameters associated with a grid (see CF conventions
for more info on which parameters to set). Check validity of parameter names and units.
Additional mapping names and parameter names can be defined via the MIP table.
Arguments:

• grid_id = the “handle” returned by a previous call to cmor_grid, indicating which grid
the mapping parameters should be associated with.

• mapping_name = name of the mapping (see CF conventions). This name dictates
which parameters should be set and for some parameters restricts their possible values
or range. New mapping names can be added via MIP tables.

• nparameters = number of parameters set.
• parameter_names = array (list for Python) of strings containing the names of the

parameters to set. In the case of “standard_parallel”, CF allows either 1 or 2 parallels to
be specified (i.e. the attribute standard_parallel may be an array of length 2). In the
case of 2 parallels, CMOR requires the user to specify these as separate parameters,
named standard_parallel_1 and standard_parallel_2, but then the two parameters will
be stored in an array, consistent with CF. In the case of a single parallel, the name
standard_parallel should be specified. In the C version of this function,
parameter_names is declared of length [nparameters][lparameters], where lparameters
in the length of each string array element (see below). In Python parameter_names can
be defined as a dictionary containing the keys that represent the parameter_names.
The value associated with each key can be either a list [float, str] (or [str, float])
representing the value/units of each parameter, or another dictionary containing the
keys “value” and “units”. If these conditions are fulfilled, then parameter_units and
parameter_values are optional and would be ignored if passed.

• lparameters = length of each element of the string array. If, for example,
parameter_names includes 5 parameters, each 24 characters long (i.e., it is declared
[5][24]), you would pass lparameters=24.

• parameter_values = array containing the values associated with each parameter. In
Python this is optional if parameter_names is a dictionary containing the values and
units.

• parameter_units = array (list for Python) of string containing the units of the
parameters to set. In C parameter_units is declared of length [nparameters][lunits]. In
Python it is optional if parameter_names is a dictionary containing the value and units.

• lunits = length of each elements of the units string array (e.g., if parameters_units is
declared [5][24], you would pass 24 because each elements has 24 characters).

Returns upon success:
• Fortran: 0
• C: 0
• Python: None

cmor_time_varying_grid_coordinate()
Fortran: coord_var_id = cmor_time_varying_grid_coordinate(grid_id, table_entry, units,
missing_value)
C: error_flag = cmor_time_varying_grid_coordinate(int *coord_var_id, int grid_id, char
*table_entry, char *units, char type, void *missing, [int *coordinate_type])
Python: coord_var_id = time_varying_grid_coordinate(grid_id, table_entry, units,
[missing_value])
Description: Define a grid to be associated with data, including the latitude and longitude
arrays. Note that in CMIP5 this function must be called to store the variables called for in the
cf3hr MIP table. The grid can be structured with up to 6 dimensions. These dimensions, which
may be simple “index” axes, must be defined via cmor_axis prior to calling cmor_grid. This
function returns a “handle” (grid_id) that uniquely identifies the grid (and its data/metadata) to
be written. The grid_id will subsequently be passed by the user to other CMOR functions. The
cmor_grid function will typically be invoked to define each grid necessary for the experiment
(e.g., ocean grid, vegetation grid, atmosphere grid, etc.). There is no need to call this function
in the case of a Cartesian lat/lon grid. In this case, simply define the latitude and longitude
axes and pass their id’s (“handles”) to cmor_variable.
Arguments:

• coord_var_id = the “handle”: a positive integer returned by this function, which
uniquely identifies the variable and can be used in subsequent calls to CMOR.

• grid_id = the value returned by cmor_grid when the grid was created.
• table_entry = name of the variable (as it appears in the MIP table) that this function

defines.
• units = units of the data that will be passed to CMOR by function cmor_write. These

units may differ from the units of the data output by CMOR. Whenever possible, this
string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/
software/udunits/). In the case of dimensionless quantities the units should be specified
consistent with the CF conventions, so for example: percent, units=’percent’; for a
fraction, units=’1’; for parts per million, units=’1e-6’, etc.).

• type = type of the missing_value, which must be the same as the type of the array that
will be passed to cmor_write. The options are: ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int).

• [missing_value] = scalar that is used to indicate missing data for this variable. It must
be the same type as the data that will be passed to cmor_write. This missing_value will
in general be replaced by a standard missing_value specified in the MIP table. If there
are no missing data, and the user chooses not to declare the missing value, then this
argument may be omitted.

• [coordinate_type] = place holder for future implementation, unused, pass NULL
Returns:

• Fortran: a positive integer if an error is encountered; otherwise returns a negative
integer (the “handle”) uniquely identifying the grid.

• C: 0 upon success.
• Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or

if an error is encountered an exception is raised.

cmor_zfactor()
Fortran: zfactor_id = cmor_zfactor(zaxis_id, zfactor_name, [axis_ids], [units], zfactor_values,
zfactor_bounds)
C: error_flag = cmor_zfactor (int *zfactor_id, int zaxis_id, char *zfactor_name, char *units, int
ndims, int axis_ids[], char type, void *zfactor_values, void *zfactor_bounds)
Python: zfactor_id = zfactor(zaxis_id, zfactor_name, units, axis_ids, type, zfactor_values=None,
zfactor_bounds=None)
Description: Define a factor needed to convert a non-dimensional vertical coordinate (model
level) to a physical location. For pressure, height, or depth, this function is unnecessary, but
for dimensionless coordinates it is needed. In the case of atmospheric sigma coordinates, for
example, a scalar parameter must be defined indicating the top of the model, and the variable
containing the surface pressure must be identified. The parameters that must be defined for
different vertical dimensionless coordinates are listed in Appendix D of the CF convention
document (http://www.cgd.ucar.edu/cms/eaton/cf-metadata). Often bounds for the zfactors will
be needed (e.g., for hybrid sigma coordinates, “A’s” and “B’s” must be defined both for the
layers and, often more importantly, for the layer interfaces). This function must be invoked for
each z-factor required.
Arguments:

• zfactor_id = the “handle”: a positive integer returned by this function which uniquely
identifies the grid defined in this call to CMOR and can subsequently be used in calls to
CMOR.

• zaxis_id = an integer (“handle”) returned by cmor_axis (which must have been
previously called) indicating which axis requires this factor.

• zfactor_name = name of the z-factor that will be defined by this function. This should
correspond to an entry in the MIP table.

• [axis_ids] = an integer array containing the list of axis_id’s (individually defined by
calls to cmor_axis), which the z-factor defined here is a function of (e.g. for surface
pressure, the array of i.d.’s would usually include the longitude, latitude, and time
axes.) The order of the axes must be consistent with the array passed as param_values.
If the z-factor parameter is a function of a single dimension (e.g., model level), the
single axis_id should be passed as an array of rank one and length 1, not as a scalar. If
the parameter is a scalar, then this parameter may be omitted. If this parameter is
carried on a non-cartesian latitude-longitude grid, then the grid_id should be passed
instead of axis_ids, for latitude/longitude. Again if axis_ids collapses to a scalar, it
should be passed as an array of rank one and length 1, not as a scalar.

• [units] = units associated with the z-factor passed in zfactor_values and
zfactor_bounds. (These are the units of the user’s z-factors, which may differ from the
units of the z-factors written to the netCDF file by CMOR.) . These units must be
recognized by udunits or must be identical to the units specified in the MIP table. In the
case of a dimensionless z-factors, either omit this argument, or set units=’’, or set
units=’1’.

• type = type of the zfactor_values and zfactor_bounds (if present) passed to this
function. This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char).

• [zfactor_values] = z-factor values associated with dimensionless vertical coordinate
identified by zaxis_id. If this z-factor is a function of time (e.g., surface pressure for
sigma coordinates), the user can omit this argument and instead store the z-factor
values by calling cmor_write. In that case the cmor_write argument, “var_id”, should be
set to zfactor_id (returned by this function) and the argument, “store_with”, should be
set to the variable id of the output field that requires zfactor as part of its metadata.
When many fields are a function of the (dimensionless) model level, cmor_write will
have to be called several times, with the same zfactor_id, but with different variable
ids. If no values are passed, omit this argument.

• [zfactor_bounds] = z-factor values associated with the cell bounds of the vertical
dimensionless coordinate. These values should be of the same type as the
zfactor_values (e.g., if zfactor_values is double precision, then zfactor_bounds must also
be double precision). If no bounds values are passed, omit this argument or set zfactor
= ‘none’. This is a ONE dimensional array of length nlevs+1.

Returns:

• Fortran: a negative integer if an error is encountered; otherwise returns a positive
integer (the “handle”) uniquely identifying the z-factor.

• C: 0 upon success.
• Python: upon success, a positive integer (the “handle”) uniquely identifying the z-

factor, or if an error is encountered an exception is raised.

cmor_variable()
Fortran: var_id = cmor_variable([table], table_entry, units, axis_ids, [missing_value],
[tolerance], [positive], [original_name], [history], [comment])
C: error_flag = int cmor_variable(int var_id, char *table_entry, char *units, int ndims, int
axis_ids[], char type, void *missing, double *tolerance, char *positive, charoriginal_name, char
*history, char *comment)
Python: var_id = variable(table_entry, units, axis_ids, type=’f’, missing_value=None, tolerance
= 1.e-4, positive=None, original_name=None, history=None, comment=None)
Description: Define a variable to be written by CMOR and indicate which axes are associated
with it. This function prepares CMOR to write the file that will contain the data for this variable.
This function returns a “handle” (var_id), uniquely identifying the variable, which will
subsequently be passed as an argument to the cmor_write function. The variable specified by
the table_entry argument must be found in the currently “set” CMOR table, as specified by the
cmor_load_table and cmor_set_table functions, or as an option, it can be provided in the
Fortran version (for backward compatibility) by the now deprecated “table” keyword argument.
The cmor_variable function will typically be repeatedly invoked to define other variables. Note
that backward compatibility was kept with the Fortran-only optional “table” keyword. But it is
now recommended to use cmor_load_table and cmor_set_table instead (and necessary for C/
Python).
Arguments:

• var_id = the “handle”: a positive integer returned by this function, which uniquely
identifies the variable and can be used in subsequent calls to CMOR.

• [table] = character string containing the filename of the MIP-specific table where
table_entry (described next) can be found (e.g., “CMIP5_table_amon”, ‘IPCC_table_A1’,
‘AMIP_table_1a’, ‘AMIP_table_2’, ‘CMIP_table_2’, etc.) In CMOR2 this is an optional
argument and is deprecated because the table can be specified through the
cmor_load_table and cmor_set_table functions.

• table_entry = name of the variable (as it appears in the MIP table) that this function
defines.

• units = units of the data that will be passed to CMOR by function cmor_write. These
units may differ from the units of the data output by CMOR. Whenever possible, this
string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/
software/udunits/). In the case of dimensionless quantities the units should be specified
consistent with the CF conventions, so for example: percent, units=’percent’; for a
fraction, units=’1’; for parts per million, units=’1e-6’, etc.).

• ndims = number of axes the variable contains (i.e., the rank of the array), which in fact
is the number of elements in the axis_ids array that will be processed by CMOR.

• axis_ids = 1-d array containing integers returned by cmor_axis, which specifies, via
their “handles” (i.e., axis_ids), the axes associated with the variable that this function
defines. These handles should be ordered consistently with the data that will be passed
to CMOR through function cmor_write (see documentation below). If the size of the 1-d
array is larger than the number of dimensions, the ‘unused’ dimension handles must be
set to 0. Note that if the handle of a single axis is passed, it must not be passed as a
scalar but as a rank 1 array of length 1. Scalar (“singleton”) dimensions defined in the
MIP table may be omitted from axis_ids unless they have been explicitly redefined by
the user through calls to cmor_axis. A “singleton” dimension that has been explicitly
defined by the user should appear last in the list of axis_ids if the array of data passed
to cmor_write for this variable actually omits this dimension; otherwise it should appear
consistent with the position of the axis in the array of data passed to cmor_write. In the
case of a non-Cartesian grid, replace the values of the grid specific axes (representing
the lat/lon axes) with the single grid_id returned by cmor_grid.

• type = type of the missing_value, which must be the same as the type of the array that
will be passed to cmor_write. The options are: ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int).

• [missing_value] = scalar that is used to indicate missing data for this variable. It must
be the same type as the data that will be passed to cmor_write. This missing_value will
in general be replaced by a standard missing_value specified in the MIP table. If there
are no missing data, and the user chooses not to declare the missing value, then this
argument may be omitted or assigned the value ‘none’ (i.e., missing_value=’none’).

• [tolerance] = scalar (type real) indicating fractional tolerance allowed in missing
values found in the data. A value will be considered missing if it lies within
±tolerance*missing_value of missing_value. The default tolerance for real and double
precision missing values is 1.0e-4 and for integers 0. This argument is ignored if the
missing_value argument is not present.

• [positive] = ‘up’ or ‘down’ depending on whether a user-passed vertical energy (heat)
flux or surface momentum flux (stress) input to CMOR is positive when it is directed
upward or downward, respectively. This information will be used by CMOR to determine

whether a sign change is necessary to make the data consistent with the MIP
requirements. This argument is required for vertical energy and salt fluxes, for “flux
correction” fields, and for surface stress; it is ignored for all other variables.

• [original_name] = the name of the variable as it is commonly known at the user’s
home institute. If the variable passed to CMOR was computed in some simple way from
two or more original fields (e.g., subtracting the upwelling and downwelling fluxes to
get a net flux), then it is recommended that this be indicated in the “original_name”
(e.g., “irup – irdown”, where “irup” and “irdown” are the names of the original fields
that were subtracted). If more complicated processing was required, this information
would more naturally be included in a “history” attribute for this variable, described
next.

• [history] = how the variable was processed before outputting through CMOR (e.g.,
give name(s) of the file(s) from which the data were read and indicate what calculations
were performed, such as interpolating to standard pressure levels or adding 2 fluxes
together). This information should allow someone at the user’s institute to reproduce
the procedure that created the CMOR output. Note that this history attribute is variable-
specific, whereas the history attribute defined by cmor_dataset provides information
concerning the model simulation itself or refers to processing procedures common to all
variables (for example, mapping model output from an irregular grid to a Cartesian
coordinate grid). Note that when appropriate, CMOR will also indicate in the “history”
attribute any operations it performs on the data (e.g., scaling the data, changing the
sign, changing its type, reordering the dimensions, reversing a coordinate’s direction or
offsetting longitude). Any user-defined history will precede the information generated
by CMOR.

• [comment] = additional notes concerning this variable can be included here.
Returns:

• Fortran: a negative integer if an error is encountered; otherwise returns a positive
integer (the “handle”) uniquely identifying the variable.

• C: 0 upon success.
• Python: upon success, a positive integer (the “handle”) uniquely identifying the

variable, or if an error is encountered an exception is raised.

cmor_set_variable_attribute()
Fortran: error_flag = cmor_set_variable_attribute(integer var_id, character() name, character()
value)

C: error_flag = cmor_set_variable_attribute(int variable_id, char *attribute_name, char type,
void *value)
Python: set_variable_attribute(var_id,name,value)
Description: Defines an attribute to be associated with the variable specified by the
variable_id. This function is unlikely to be called in preparing CMIP5 output, except to delete
the “ext_cell_measures” attribute (setting it to a empty string). For this reason you can only
set character type attributes at the moment via Python and Fortran.
Arguments:

• variable_id = the “handle” returned by cmor_variable (when the variable was
defined), which will become better described by the attribute defined in this function.

• attribute_name = name of the attribute
• type = type of the attribute value passed, which can be ‘d’ (double), ‘f’ (float), ‘l’

(long), ‘i’ (int), or ‘c’ (char).
• value = whatever value you wish to set the attribute to (type defined by type

argument).
Returns upon success:

• Fortran: 0
• C: 0
• Python: 0

cmor_get_variable_attribute()
Fortran: error_flag = cmor_get_variable_attribute(integer var_id, character(*) name, character
*value)
C: error_flag = cmor_get_variable_attribute(int variable_id, char *attribute_name, char type,
void *value)
Python: get_variable_attribute(var_id,name)
Description: retrieves an attribute value set for the variable specified by the variable_id. This
function is unlikely to be called in preparing CMIP5 output. The Python and Fortran version will
only work on attribute of character (string) type, otherwise chaotic results should be expected
Arguments:

• variable_id = the “handle” returned by cmor_variable (when the variable was defined)
identifying which variable the attribute is associated with.

• attribute_name = name of the attribute
• type = type of the attribute value to be retrieved. This can be ‘d’ (double), ‘f’ (float), ‘l’

(long), ‘i’ (int), or ‘c’ (char)
• value = the argument that will accept the retrieved attribute.

Returns upon success:
• Fortran: 0
• C: 0
• Python: The attribute value

cmor_has_variable_attribute()
Fortran: error_flag = cmor_has_variable_attribute(integer var_id, character(*) name)
C: error_flag = cmor_has_variable_attribute(int variable_id, char *attribute_name)
Python: has_variable_attribute(var_id,name)
Description: Determines whether an attribute exists and is associated with the variable
specified by variable_id, which is a handle returned to the user by a previous call to
cmor_variable. This function is unlikely to be called in preparing CMIP5 output.
Arguments:

• variable_id = the “handle” specifying which variable is of interest. A variable_id is
returned by cmor_variable each time a variable is defined.

• attribute_name = name of the attribute of interest.
Returns upon success (i.e., if the attribute is found):

• Fortran: 0
• C: 0
• Python: True

cmor_create_output_path()
Fortran: call cmor_create_output_path(var_id, path)
C : isfixed = cmor_create_output_path(int var_id, char *path)
Python: path = create_output_path(var_id)

Description: construct the output path, consistent with CMIP5 specifications, where the file will
be stored.
Arguments:

• var_id = variable identification (as returned from cmor_variable) you wish to get the
output path for.

• path = string (or pointer to a string), which is returned by the function and contains the
output path.

Returns:
• Fortran: nothing it is a subroutine
• C: 0 upon success or 1 if the filed is a fixed field
• Python: the full path to the output file

cmor_write()
Fortran: error_flag = cmor_write(var_id, data, [file_suffix], [ntimes_passed], [time_vals],
[time_bnds], [store_with])
C: error_flag = cmor_write(int var_id, void *data, char type, char *file_suffix, int ntimes_passed,
double *time_vals, double *time_bounds, int *store_with)
Python: write(var_id, data, ntimes_passed=None, file_suffix=””, time_vals=None,
time_bnds=None, store_with=None)
Description: For the variable identified by var_id, write an array of data that includes one or
more time samples. This function will typically be repeatedly invoked to write other variables
or append additional time samples of data. Note that time-slices of data must be written
chronologically.
Arguments:

• var_id = integer returned by cmor_variable identifying the variable that will be written
by this function.

• data = array of data written by this function (of rank<8). The rank of this array should
either be: (a) consistent with the number of axes that were defined for it, or (b) it
should be 1-dimensional, in which case the data must be stored contiguously in
memory. In case (a), an exception is that for a variable that is a function of time and
when only one “time-slice” is passed, then the array can optionally omit this dimension.
Thus, for a variable that is a function of longitude, latitude, and time, for example, if
only a single time-slice is passed to cmor_write, the rank of array “data” may be
declared as either 2 or 3; when declared rank 3, the time-dimension will be size 1. It is

recommended (but not required) that the shape of data (i.e., the size of each
dimension) be consistent with those expected for this variable (based on the axis
definitions), but they are allowed to be larger (the extra values beyond the defined
dimension domain will be ignored). In any case the dimension sizes (lengths) must
obviously not be smaller than those defined by the calls to cmor_axis.

• type = type of variable array (“data”), which can be ‘d’ (double), ‘f’ (float), ‘l’ (long) or
‘i’ (int).

• [file_suffix] = string that will be concatenated with a string automatically generated
by CMOR to form a unique filename where the output is written. This suffix is only
required when a time-sequence of output fields will not all be written into a single file
(i.e., two or more files will contain the output for the variable). The file prefix generated
by CMOR is of the form variable_table, where variable is replaced by table_entry (i.e.,
the name of the variable), and table is replaced by the table number (e.g., tas_A1 refers
to surface air temperature as specified in table A1). Permitted characters will be: a-z, A-
Z, 0-9, and “-”. There are no restrictions on the suffix except that it must yield unique
filenames and that it cannot contain any “”. If the user supplies a suffix, the leading ‘’
should be omitted (e.g., pass ‘1979-1988’, not ‘_1979-1988’). Note that the suffix
passed through cmor_write remains in effect for the particular variable until (optionally)
redefined by a subsequent call. In the case of CMOR “Append mode” (in case the file
already existed before a call to cmor_setup), then file_suffix is to be used to point to the
original file, this value should reflect the FULL path where the file can be found, not just
the file name. CMOR2 will be smart enough to figure out if a suffix was used when
creating that file. Note that this file will be first moved to a temporary file and
eventually renamed to reflect the additional times written to it.

• [ntimes_passed] = integer number of time slices passed on this call. If omitted, the
number will be assumed to be the size of the time dimension of the data (if there is a
time dimension).

• [time_vals] = 1-d array (must be double precision) time coordinate values associated
with the data array. This argument should appear only if the time coordinate values
were not passed in defining the time axis (i.e., in calling cmor_axis). The units should be
consistent with those passed as an argument to cmor_axis in defining the time axis. If
cell bounds are also passed (see next argument, ‘[time_bnds]’), then CMOR will first
check that each coordinate value is not outside its associated cell bounds;
subsequently, however, the user-defined coordinate value will be replaced by the mid-
point of the interval defined by its bounds, and it is this value that will be written to the
netCDF file.

• [time_bnds] = 2-d array (must be double precision) containing time bounds, which
should be in the same units as time_vals. If the time_vals argument is omitted, this
argument should also be omitted. The array should be dimensioned (2, n) in Fortran,
and (n,2) in C/Python, where n is the size of time_vals (see CF standard document,
http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further information).

• [store_with] = integer returned by cmor_variable identifying the variable that the
zfactor should be stored with. This argument must be defined when and only when
writing a z-factor. (See description of the zfactor function above.)

Returns upon success:
• Fortran: 0
• C: 0
• Python: None

cmor_close()
Fortran: error_flag = cmor_close(var_id, file_name, preserve)
C: error_flag = cmor_close(void) or
C: error_flag = cmor_close_variable(int var_id, char *file_name, int *preserve)
Python: error_flag (or if name=True, returns the name of the file) = close(var_id=None,
file_name=False, preserve=False)
Description: Close a single file specified by optional argument var_id, or if this argument is
omitted, close all files created by CMOR (including log files). To be safe, before exiting any
program that invokes CMOR, it is best to call this function with the argument omitted. In C to
close a single variable, use: cmor_close_variable(var_id). When using this function to close a
single file, an additional optional argument (of type “string”) can be included, into which will
be returned the file name created by CMOR. [In python, the string is returned by the function.]
Another additional optional argument can be passed specifying if the variable should be
preserved for future use (e.g., if you want to write additional data but to a new file). Note that
when preserve is true, the original var_id is preserved.
Arguments:

• [var_id] = the “handle” identifying an individual variable and the associated output file
that will be closed by this function.

• [file_name] = a string where the output file name will be stored. The file_name is
returned only if its var_id has been included in the close_cmor argument list. This option
provides a convenient method for the user to record the filename, which might be
needed on a subsequent call to CMOR, for example, in order to append additional time
samples to the file.

• [preserve] = Do you want to preserve the var definition? (0/1) If true, the original
var_id is preserved.

Returns:
• Fortran: 0 upon success
• C: 0 upon success
• Python: None if file_name=False, or the name of the file if file_name=True and a var_id

is passed as an argument.

Acknowledgements
Acknowledgements
Several individuals have supported the development of the CMOR1 software and provided
encouragement, including Dean Williams, Dave Bader, and Peter Gleckler. Jonathan Gregory,
Jim Boyle, and Bob Drach all provided valuable suggestions on how to simplify or in other ways
improve the design of this software, and we particularly appreciate the time they spent
reading and thinking about this problem. Jim Boyle additionally helped in a number of other
ways, including porting CMOR to various platforms. Brian Eaton provided his usual careful and
thoughtful responses to questions about CF compliance. Finally, we appreciate the
encouragement expressed by the WGCM for developing CMOR.
The complete rewrite of CMOR, along with the new capabilities added to version 2, was
implemented by Charles Doutriaux. We thank Dean Williams, Bob Drach, Renata McCoy, Jim
Boyle, and the British Atmospheric Data Center (BADC). We also thank every one of the “early”
adopters of CMOR2 who patiently helped us test and debug CMOR2. In particular we would like
to thank Jamie Kettleborough from the UK Metoffice, Stephen Pascoe of the British Atmospheric
Data Centre, Joerg Wegner of Zentrum für Marine und Atmosphärische Wissenschaften, Yana
Malysheva of the Geophysical Fluid Dynamics Laboratory and Alejandro Bodas-Salcedo of UK
Metoffice for the many lines of codes, bug fixes, and sample tests they sent our way
Enhanced to CMOR with capabilities added for version 3 was implemented by Denis Nadeau.
We thanks Paul Durack and Martin Juckes who provided inputs, enhancement and solutions to
improve flexibility. We also thank the “early” users of CMOR3 for their patience and for helping
use improving CMOR3.

Anaconda installation
All Platforms System Requirements

• Anaconda 

• Make sure anaconda is in your PATH (assuming ananconda is installed in
${HOME}/anaconda)

export PATH=${HOME}/anaconda/bin:${PATH} # for [ba]sh
setenv PATH ${HOME}/anaconda/bin:${PATH} # for [t]csh

Bypassing firewalls
• If your institution has a firewall

conda config --set ssl_verify False
binstar config --set verify_ssl False # it's not a typo ssl and verify are reverse
d

Installing
• Run the following command

https://www.continuum.io/
https://www.continuum.io/

install cmor, it will also install cdms2.
--
conda install -c conda-forge -c pcmdi -c uvcdat cmor

Clone the CMIP6 table to your working directory.
--
mkdir CMIP6_work
cd CMIP6_work

Disable SSL verification (firewall only).

export GIT_SSL_NO_VERIFY=true
git clone https://github.com/PCMDI/cmip6-cmor-tables.git

Create a softlink of your tables in your working directory.

ln -s cmip6-cmor-tables/Tables .

Set the UDUNITS2_XML_PATH to your anaconda installation.

export UDUNITS2_XML_PATH=${HOME}/anaconda/share/udunits/udunits2.xml

Conda environment
• Create your CMOR environment with anaconda.

conda create -n [YOUR_ENV_NAME_HERE] -c conda-forge -c pcmdi -c uvcdat cmor
source activate [YOUR_ENV_NAME_HERE]
conda env list
conda create -n [YOUR_ENV_NAME_HERE] --clone ENV

• To learn more about conda environments

http://conda.pydata.org/docs/using/envs.html
http://conda.pydata.org/docs/using/envs.html

Github Installation
Environment setup

To get trough the firewall!!
export GIT_SSL_NO_VERIFY=true
Where do you want you installation?
export PREFIX=$HOME/build
mkdir build
cd build

Compile Dependencies

Retrieve sources

• http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.17.tar  or latest
• ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.4.0.tar.gz (ftp://ftp.unidata.ucar.edu/pub/

netcdf/netcdf-4.4.0.tar.gz) or latest
• ftp://ftp.unidata.ucar.edu/pub/udunits/udunits-2.2.20.tar.gz (ftp://ftp.unidata.ucar.edu/

pub/udunits/udunits-2.2.20.tar.gz) or latest
• http://www.mirrorservice.org/sites/ftp.ossp.org/pkg/lib/uuid/uuid-1.6.2.tar.gz or latest

tar xf hdf5-1.8.17.tar
tar xzf netcdf-4.4.0.tar.gz
tar xzf udunits-2.2.20.tar.gz
tar xzf uuid-1.6.2.tar.gz

build libuuid

cd uuid-1.6.2
./configure --prefix=$PREFIX
make
make install

http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.17.tar
http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.17.tar
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.4.0.tar.gz
ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.4.0.tar.gz
ftp://ftp.unidata.ucar.edu/pub/udunits/udunits-2.2.20.tar.gz
ftp://ftp.unidata.ucar.edu/pub/udunits/udunits-2.2.20.tar.gz
http://www.mirrorservice.org/sites/ftp.ossp.org/pkg/lib/uuid/uuid-1.6.2.tar.gz
http://www.mirrorservice.org/sites/ftp.ossp.org/pkg/lib/uuid/uuid-1.6.2.tar.gz

build udnits2

cd ../udunits-2.2.20
./configure --prefix=$PREFIX
make
make install

build hdf5

cd ../hdf5-1.8.17
./configure --prefix=$PREFIX
make
make install

build netcdf4

export CFLAGS="-I${PREFIX}/include"
export LDFLAGS="-L${PREFIX}/lib"

cd ../netcdf-4.4.0
./configure --prefix=$PREFIX --enable-netcdf4
make
make install

Build cmor

cd ..
git clone https://github.com/PCMDI/cmor.git
cd cmor
git checkout master

./configure --prefix=$PREFIX --with-python --with-uuid --with-udunits --with-netcdf=$PREF
IX/
make
make install
make python

Example Python
CMOR user Input
common_user_input.json 

https://github.com/PCMDI/cmor/blob/master/Test/common_user_input.json
https://github.com/PCMDI/cmor/blob/master/Test/common_user_input.json

{
"_control_vocabulary_file": "CMIP6_CV.json",
"_cmip6_option": "CMIP6",

"tracking_prefix": "hdl:21.14100",
"activity_id": "ISMIP6",

"branch_method": "standard",
"branch_time_in_child": "365.0",

"#output": "Output Path where files are written",
"outpath": "CMIP6",

"#experiment_id": "CMIP6 valid experiment_ids are found in CMIP6_CV.js
on",

"experiment_id": "piControl-withism",
"sub_experiment_id": "none",
"sub_experiment": "none",

"source_type": "AOGCM ISM AER",
"parent_mip_era": "N/A",
"mip_era": "CMIP6",
"calendar": "360_day",
"branch_time": "1.34",

"realization_index": "11",
"initialization_index": "1",
"physics_index": "1",
"forcing_index": "1",

"#contact ": "Not required",
"contact ": "Python Coder (coder@a.b.c.com)",

"#history": "not required, supplemented by CMOR",
"history": "Output from archivcl_A1.nce/giccm_03_std_2xCO2_225

6.",

"#comment": "Not required",
"comment": "Equilibrium reached after 30-year spin-up after whi

ch data were output starting with nominal date of January 2030",

"#references": "Not required",
"references": "Model described by Koder and Tolkien (J. Geophys. R

es., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html 2XCO2 simulation
described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)'",

"grid": "gs1x1",

"grid_label": "gr",
"nominal_resolution": "5 km",

"institution_id": "PCMDI",

"parent_activity_id": "CMIP",
"parent_experiment_id": "histALL",
"parent_source_id": "GFDL-CM2-1",
"parent_variant_label": "r1i1p1f3",

"#run_variant": "Description of run variant (Recommended).",
"run_variant": "forcing: black carbon aerosol only",

"#source_id": "Model Source",
"source_id": "PCMDI-test-1-0",

"#source": "source title, first part is source_id",
"source": "PCMDI-test 1.0",

"#output_path_template": "Template for output path directory using tables ke
ys or global attributes",

"output_path_template": "<activity_id><institution_id><source_id><experimen
t_id><variant_label><table><variable_id><grid_label><version>",

"output_file_template": "<variable_id><table><experiment_id><source_id><var
iant_label><grid_label>",

"license": "CMIP6 model data produced by PCMDI is licensed un
der a Creative Commons Attribution \"Share Alike\" 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/). Use of the data should be acknowledged following guide
lines found at https://pcmdi.llnl.gov/home/CMIP6/citation.html. [Permissions beyond the s
cope of this license may be available at http://pcmdi.llnl.gov.] Further information abou
t this data, including some limitations, can be found via the further_info_url (recorded
as a global attribute in data files). The data producers and data providers make no warra
nty, either express or implied, including, but not limited to, warranties of merchantabil
ity and fitness for a particular purpose. All liabilities arising from the supply of the
information (including any liability arising in negligence) are excluded to the fullest e
xtent permitted by law."

}

Python source code
test_doc.py 

https://github.com/PCMDI/cmor/blob/master/Test/test_doc.py
https://github.com/PCMDI/cmor/blob/master/Test/test_doc.py

CMIP6_Amon.json 

import cmor

cmor.setup(inpath='Tables',netcdf_file_action=cmor.CMOR_REPLACE_4)

cmor.dataset_json("Test/common_user_input.json")

table='CMIP6_Amon.json'
cmor.load_table(table)

itime = cmor.axis(table_entry= 'time',
units= 'days since 2000-01-01 00:00:00',
coord_vals= [15,],
cell_bounds= [0, 30])

ilat = cmor.axis(table_entry= 'latitude',
units= 'degrees_north',
coord_vals= [0],
cell_bounds= [-1, 1])

ilon = cmor.axis(table_entry= 'longitude',
units= 'degrees_east',
coord_vals= [90],
cell_bounds= [89, 91])

axis_ids = [itime,ilat,ilon]

varid = cmor.variable('ts', 'K', axis_ids)
cmor.write(varid, [273])
outfile=cmor.close(varid, file_name=True)
print "File written: ",outfile
cmor.close()

https://github.com/PCMDI/cmor/blob/master/TestTables/CMIP6_Amon.json
https://github.com/PCMDI/cmor/blob/master/TestTables/CMIP6_Amon.json

Fortran Example
CMOR user input

• common_user_input.json 

https://raw.githubusercontent.com/PCMDI/cmor/master/Test/common_user_input.json
https://raw.githubusercontent.com/PCMDI/cmor/master/Test/common_user_input.json

{
"_control_vocabulary_file": "CMIP6_CV.json",
"_cmip6_option": "CMIP6",

"tracking_prefix": "hdl:21.14100",
"activity_id": "ISMIP6",

"branch_method": "standard",
"branch_time_in_child": "365.0",

"#output": "Output Path where files are written",
"outpath": "CMIP6",

"#experiment_id": "CMIP6 valid experiment_ids are found in CMIP6_CV.js
on",

"experiment_id": "piControl-withism",
"sub_experiment_id": "none",
"sub_experiment": "none",

"source_type": "AOGCM ISM AER",
"parent_mip_era": "N/A",
"mip_era": "CMIP6",
"calendar": "360_day",
"branch_time": "1.34",

"realization_index": "11",
"initialization_index": "1",
"physics_index": "1",
"forcing_index": "1",

"#contact ": "Not required",
"contact ": "Python Coder (coder@a.b.c.com)",

"#history": "not required, supplemented by CMOR",
"history": "Output from archivcl_A1.nce/giccm_03_std_2xCO2_225

6.",

"#comment": "Not required",
"comment": "Equilibrium reached after 30-year spin-up after whi

ch data were output starting with nominal date of January 2030",

"#references": "Not required",
"references": "Model described by Koder and Tolkien (J. Geophys. R

es., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html 2XCO2 simulation
described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)'",

"grid": "gs1x1",

"grid_label": "gr",
"nominal_resolution": "5 km",

"institution_id": "PCMDI",

"parent_activity_id": "CMIP",
"parent_experiment_id": "histALL",
"parent_source_id": "GFDL-CM2-1",
"parent_variant_label": "r1i1p1f3",

"#run_variant": "Description of run variant (Recommended).",
"run_variant": "forcing: black carbon aerosol only",

"#source_id": "Model Source",
"source_id": "PCMDI-test-1-0",

"#source": "source title, first part is source_id",
"source": "PCMDI-test 1.0",

"#output_path_template": "Template for output path directory using tables ke
ys or global attributes",

"output_path_template": "<activity_id><institution_id><source_id><experimen
t_id><variant_label><table><variable_id><grid_label><version>",

"output_file_template": "<variable_id><table><experiment_id><source_id><var
iant_label><grid_label>",

"license": "CMIP6 model data produced by PCMDI is licensed un
der a Creative Commons Attribution \"Share Alike\" 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/). Use of the data should be acknowledged following guide
lines found at https://pcmdi.llnl.gov/home/CMIP6/citation.html. [Permissions beyond the s
cope of this license may be available at http://pcmdi.llnl.gov.] Further information abou
t this data, including some limitations, can be found via the further_info_url (recorded
as a global attribute in data files). The data producers and data providers make no warra
nty, either express or implied, including, but not limited to, warranties of merchantabil
ity and fitness for a particular purpose. All liabilities arising from the supply of the
information (including any liability arising in negligence) are excluded to the fullest e
xtent permitted by law."

}

Fortran source code
• ipcc_test_code.f90 

https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.f90
https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.f90

!!$pgf90 -I/work/NetCDF/5.1/include -L/work/NetCDF/5.1/lib -l netcdf -L. -l cmor Test/tes
t_dimensionless.f90 -IModules -o cmor_test
!!$pgf90 -g -I/pcmdi/charles_work/NetCDF/include -L/pcmdi/charles_work/NetCDF/lib -lnetcd
f -module Modules -IModules -L. -lcmor -I/pcmdi/charles_work/Unidata/include -L/pcmdi/cha
rles_work/Unidata/lib -ludunits Test/test_dimensionless.f90 -o cmor_test

MODULE local_subs

USE cmor_users_functions
PRIVATE
PUBLIC read_coords, read_time, read_3d_input_files, read_2d_input_files

CONTAINS

SUBROUTINE read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alats
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alons
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: plevs
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lat
DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lon

INTEGER :: i

DO i = 1, SIZE(alons)
alons(i) = (i-1)*360./SIZE(alons)
bnds_lon(1,i) = (i - 1.5)*360./SIZE(alons)
bnds_lon(2,i) = (i - 0.5)*360./SIZE(alons)

END DO

DO i = 1, SIZE(alats)
alats(i) = (size(alats)+1-i)*10
bnds_lat(1,i) = (size(alats)+1-i)*10 + 5.
bnds_lat(2,i) = (size(alats)+1-i)*10 - 5.

END DO

DO i = 1, SIZE(plevs)
plevs(i) = i*1.0e4

END DO
plevs = (/100000., 92500., 85000., 70000.,&
60000., 50000., 40000., 30000., 25000., 20000.,&
15000., 10000., 7000., 5000., 3000., 2000., 1000., 500., 100./)

RETURN
END SUBROUTINE read_coords

SUBROUTINE read_time(it, time, time_bnds)

IMPLICIT NONE

INTEGER, INTENT(IN) :: it
DOUBLE PRECISION, INTENT(OUT) :: time
DOUBLE PRECISION, INTENT(OUT), DIMENSION(2,1) :: time_bnds

time = (it-0.5)*30.
time_bnds(1,1) = (it-1)*30.
time_bnds(2,1) = it*30.

RETURN
END SUBROUTINE read_time

INCLUDE "reader_2D_3D.f90"

END MODULE local_subs

PROGRAM ipcc_test_code
!
! Purpose: To serve as a generic example of an application that
! uses the "Climate Model Output Rewriter" (CMOR)

! CMOR writes CF-compliant netCDF files.
! Its use is strongly encouraged by the IPCC and is intended for use
! by those participating in many community-coordinated standard
! climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE,
! etc.)
!
! Background information for this sample code:
!
! Atmospheric standard output requested by IPCC are listed in
! tables available on the web. Monthly mean output is found in
! tables A1a and A1c. This sample code processes only two 3-d
! variables listed in table A1c ("monthly mean atmosphere 3-D data"
! and only four 2-d variables listed in table A1a ("monthly mean
! atmosphere + land surface 2-D (latitude, longitude) data"). The
! extension to many more fields is trivial.
!
! For this example, the user must fill in the sections of code that
! extract the 3-d and 2-d fields from his monthly mean "history"
! files (which usually contain many variables but only a single time
! slice). The CMOR code will write each field in a separate file, but
! many monthly mean time-samples will be stored together. These
! constraints partially determine the structure of the code.

!
!
! Record of revisions:

! Date Programmer(s) Description of change
! ==== ========== =====================
! 10/22/03 Rusty Koder Original code
! 1/28/04 Les R. Koder Revised to be consistent
! with evolving code design

! include module that contains the user-accessible cmor functions.
USE cmor_users_functions
USE local_subs

IMPLICIT NONE

! dimension parameters:
! ---------------------------------
INTEGER, PARAMETER :: ntimes = 2 ! number of time samples to process
INTEGER, PARAMETER :: lon = 4 ! number of longitude grid cells
INTEGER, PARAMETER :: lat = 3 ! number of latitude grid cells
INTEGER, PARAMETER :: lev = 5 ! number of standard pressure levels
INTEGER, PARAMETER :: lev2 = 19 ! number of standard pressure levels
INTEGER, PARAMETER :: n2d = 4 ! number of IPCC Table A1a fields to be

! output.
INTEGER, PARAMETER :: n3d = 3 ! number of IPCC Table A1c fields to

! be output.

! Tables associating the user's variables with IPCC standard output
! variables. The user may choose to make this association in a
! different way (e.g., by defining values of pointers that allow him
! to directly retrieve data from a data record containing many
! different variables), but in some way the user will need to map his
! model output onto the Tables specifying the MIP standard output.

! ----------------------------------

! My variable names for IPCC Table A1c fields
CHARACTER (LEN=5), DIMENSION(n3d) :: &

varin3d=(/'CLOUD', 'U ', 'T '/)

! Units appropriate to my data
CHARACTER (LEN=5), DIMENSION(n3d) :: &

units3d=(/ '% ', 'm s-1', 'K ' /)

! Corresponding IPCC Table A1c entry (variable name)
CHARACTER (LEN=2), DIMENSION(n3d) :: entry3d = (/ 'cl', 'ua', 'ta' /)

! My variable names for IPCC Table A1a fields
CHARACTER (LEN=8), DIMENSION(n2d) :: &

varin2d=(/ 'LATENT ', 'TSURF ', 'SOIL_WET', 'PSURF ' /)

! Units appropriate to my data
CHARACTER (LEN=6), DIMENSION(n2d) :: &

units2d=(/ 'W m-2 ', 'K ', 'kg m-2', 'Pa ' /)

CHARACTER (LEN=4), DIMENSION(n2d) :: &
positive2d= (/ 'down', ' ', ' ', ' ' /)

! Corresponding IPCC Table A1a entry (variable name)
CHARACTER (LEN=5), DIMENSION(n2d) :: &

entry2d = (/ 'hfls ', 'tas ', 'mrsos', 'ps ' /)

! uninitialized variables used in communicating with CMOR:
! ---

INTEGER :: error_flag
INTEGER :: znondim_id, zfactor_id
INTEGER, DIMENSION(n2d) :: var2d_ids
INTEGER, DIMENSION(n3d) :: var3d_ids
REAL, DIMENSION(lon,lat) :: data2d
REAL, DIMENSION(lon,lat,lev2) :: data3d
DOUBLE PRECISION, DIMENSION(lat) :: alats
DOUBLE PRECISION, DIMENSION(lon) :: alons
DOUBLE PRECISION, DIMENSION(lev2) :: plevs
DOUBLE PRECISION, DIMENSION(1) :: time
DOUBLE PRECISION, DIMENSION(2,1):: bnds_time
DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat
DOUBLE PRECISION, DIMENSION(2,lon) :: bnds_lon
DOUBLE PRECISION, DIMENSION(lev) :: zlevs
DOUBLE PRECISION, DIMENSION(lev+1) :: zlev_bnds
REAL, DIMENSION(lev) :: a_coeff
REAL, DIMENSION(lev) :: b_coeff
REAL :: p0
REAL, DIMENSION(lev+1) :: a_coeff_bnds
REAL, DIMENSION(lev+1) :: b_coeff_bnds
INTEGER :: ilon, ilat, ipres, ilev, itim, itim2, ilon2,ilat2
DOUBLE PRECISION bt

character(256):: outpath,mycal

! Other variables:
! ---------------------

INTEGER :: it, m
bt=0.
! ================================
! Execution begins here:
! ================================

! Read coordinate information from model into arrays that will be passed
! to CMOR.
! Read latitude, longitude, and pressure coordinate values into
! alats, alons, and plevs, respectively. Also generate latitude and
! longitude bounds, and store in bnds_lat and bnds_lon, respectively.
! Note that all variable names in this code can be freely chosen by
! the user.

! The user must write the subroutine that fills the coordinate arrays
! and their bounds with actual data. The following line is simply a
! a place-holder for the user's code, which should replace it.

! *** possible user-written call ***

call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

! Specify path where tables can be found and indicate that existing
! netCDF files should not be overwritten.

error_flag = cmor_setup(inpath='Test', netcdf_file_action='replace')

! Define dataset as output from the GICC model (first member of an
! ensemble of simulations) run under IPCC 2xCO2 equilibrium
! experiment conditions, and provide information to be included as
! attributes in all CF-netCDF files written as part of this dataset.

mycal = '360_day'

error_flag = cmor_dataset_json("Test/common_user_input.json")

! Define all axes that will be needed

ilat = cmor_axis(&
table='Tables/CMIP6_Amon.json', &
table_entry='latitude', &
units='degrees_north', &
length=lat, &
coord_vals=alats, &
cell_bounds=bnds_lat)

ilon2 = cmor_axis(&
table='Tables/CMIP6_Lmon.json', &
table_entry='longitude', &
length=lon, &
units='degrees_east', &
coord_vals=alons, &
cell_bounds=bnds_lon)

ilat2 = cmor_axis(&
table='Tables/CMIP6_Lmon.json', &
table_entry='latitude', &
units='degrees_north', &
length=lat, &
coord_vals=alats, &
cell_bounds=bnds_lat)

ilon = cmor_axis(&
table='Tables/CMIP6_Amon.json', &
table_entry='longitude', &
length=lon, &
units='degrees_east', &
coord_vals=alons, &
cell_bounds=bnds_lon)

ipres = cmor_axis(&
table='Tables/CMIP6_Amon.json', &
table_entry='plev19', &
units='Pa', &
length=lev2, &
coord_vals=plevs)

! note that the time axis is defined next, but the time coordinate
! values and bounds will be passed to cmor through function
! cmor_write (later, below).

itim = cmor_axis(&
table='Tables/CMIP6_Amon.json', &
table_entry='time', &
units='days since 2030-1-1', &
length=ntimes, &
interval='20 minutes')

itim2 = cmor_axis(&
table='Tables/CMIP6_Lmon.json', &
table_entry='time', &
units='days since 2030-1-1', &
length=ntimes, &
interval='20 minutes')

! define model eta levels (although these must be provided, they will
! actually be replaced by a+b before writing the netCDF file)
zlevs = (/ 0.1, 0.3, 0.55, 0.7, 0.9 /)
zlev_bnds=(/ 0.,.2, .42, .62, .8, 1. /)

ilev = cmor_axis(&
table='Tables/CMIP6_Amon.json', &
table_entry='standard_hybrid_sigma', &
units='1', &
length=lev, &
coord_vals=zlevs, &
cell_bounds=zlev_bnds)

! define z-factors needed to transform from model level to pressure
p0 = 1.e5
a_coeff = (/ 0.1, 0.2, 0.3, 0.22, 0.1 /)
b_coeff = (/ 0.0, 0.1, 0.2, 0.5, 0.8 /)

a_coeff_bnds=(/0.,.15, .25, .25, .16, 0./)
b_coeff_bnds=(/0.,.05, .15, .35, .65, 1./)

error_flag = cmor_zfactor(&
zaxis_id=ilev, &
zfactor_name='p0', &
units='Pa', &
zfactor_values = p0)

error_flag = cmor_zfactor(&
zaxis_id=ilev, &
zfactor_name='b', &
axis_ids= (/ ilev /), &
zfactor_values = b_coeff, &
zfactor_bounds = b_coeff_bnds)

error_flag = cmor_zfactor(&
zaxis_id=ilev, &
zfactor_name='a', &
axis_ids= (/ ilev /), &
zfactor_values = a_coeff, &
zfactor_bounds = a_coeff_bnds)

zfactor_id = cmor_zfactor(&
zaxis_id=ilev, &
zfactor_name='ps', &
axis_ids=(/ ilon, ilat, itim /), &
units='Pa')

! Define the only field to be written that is a function of model level
! (appearing in IPCC table A1c)

var3d_ids(1) = cmor_variable(&
table='Tables/CMIP6_Amon.json', &
table_entry=entry3d(1), &
units=units3d(1), &
axis_ids=(/ ilon, ilat, ilev, itim /), &
missing_value=1.0e28, &
original_name=varin3d(1))

! Define variables appearing in IPCC table A1c that are a function of pressure
! (3-d variables)

DO m=2,n3d
var3d_ids(m) = cmor_variable(&

table='Tables/CMIP6_Amon.json', &
table_entry=entry3d(m), &
units=units3d(m), &
axis_ids=(/ ilon, ilat, ipres, itim /), &
missing_value=1.0e28, &
original_name=varin3d(m))

ENDDO

! Define variables appearing in IPCC table A1a (2-d variables)

DO m=1,n2d
if (m.ne.3) then
var2d_ids(m) = cmor_variable(&

table='Tables/CMIP6_Amon.json', &
table_entry=entry2d(m), &
units=units2d(m), &
axis_ids=(/ ilon, ilat, itim /), &
missing_value=1.0e28, &
positive=positive2d(m), &
original_name=varin2d(m))

else
var2d_ids(m) = cmor_variable(&

table='Tables/CMIP6_Lmon.json', &
table_entry=entry2d(m), &
units=units2d(m), &
axis_ids=(/ ilon2, ilat2, itim2 /), &
missing_value=1.0e28, &
positive=positive2d(m), &
original_name=varin2d(m))

endif
ENDDO

PRINT*, ' '
PRINT*, 'completed everything up to writing output fields '
PRINT*, ' '

! Loop through history files (each containing several different fields,
! but only a single month of data, averaged over the month). Then
! extract fields of interest and write these to netCDF files (with
! one field per file, but all months included in the loop).

time_loop: DO it=1, ntimes

! In the following loops over the 3d and 2d fields, the user-written
! subroutines (read_3d_input_files and read_2d_input_files) retrieve
! the requested IPCC table A1c and table A1a fields and store them in
! data3d and data2d, respectively. In addition a user-written code
! (read_time) retrieves the time and time-bounds associated with the
! time sample (in units of 'days since 1970-1-1', consistent with the
! axis definitions above). The bounds are set to the beginning and
! the end of the month retrieved, indicating the averaging period.

! The user must write a code to obtain the times and time-bounds for
! the time slice. The following line is simply a place-holder for
! the user's code, which should replace it.

call read_time(it, time(1), bnds_time)

call read_3d_input_files(it, varin3d(1), data3d)

error_flag = cmor_write(&
var_id = var3d_ids(1), &
data = data3d, &
ntimes_passed = 1, &
time_vals = time, &
time_bnds = bnds_time)

call read_2d_input_files(it, varin2d(4), data2d)

error_flag = cmor_write(&
var_id = zfactor_id, &
data = data2d, &
ntimes_passed = 1, &
time_vals = time, &
time_bnds = bnds_time, &
store_with = var3d_ids(1))

! Cycle through the 3-d fields (stored on pressure levels),
! and retrieve the requested variable and append each to the
! appropriate netCDF file.

DO m=2,n3d

! The user must write the code that fills the arrays of data
! that will be passed to CMOR. The following line is simply a
! a place-holder for the user's code, which should replace it.

call read_3d_input_files(it, varin3d(m), data3d)

! append a single time sample of data for a single field to
! the appropriate netCDF file.
error_flag = cmor_write(&

var_id = var3d_ids(m), &
data = data3d, &
ntimes_passed = 1, &
time_vals = time, &
time_bnds = bnds_time)

IF (error_flag < 0) THEN
! write diagnostic messages to standard output device
write(*,*) ' Error encountered writing IPCC Table A1c ' &

// 'field ', entry3d(m), ', which I call ', varin3d(m)
write(*,*) ' Was processing time sample: ', time

END IF

END DO

! Cycle through the 2-d fields, retrieve the requested variable and
! append each to the appropriate netCDF file.

DO m=1,n2d

! The user must write the code that fills the arrays of data
! that will be passed to CMOR. The following line is simply a
! a place-holder for the user's code, which should replace it.

call read_2d_input_files(it, varin2d(m), data2d)

! append a single time sample of data for a single field to
! the appropriate netCDF file.

error_flag = cmor_write(&

var_id = var2d_ids(m), &
data = data2d, &
ntimes_passed = 1, &
time_vals = time, &
time_bnds = bnds_time)

IF (error_flag < 0) THEN
! write diagnostic messages to standard output device
write(*,*) ' Error encountered writing IPCC Table A1a ' &

// 'field ', entry2d(m), ', which I call ', varin2d(m)
write(*,*) ' Was processing time sample: ', time

END IF

END DO

END DO time_loop

! Close all files opened by CMOR.

error_flag = cmor_close()

print*, ' '
print*, '******************************'
print*, ' '
print*, 'ipcc_test_code executed to completion '
print*, ' '
print*, '******************************'

END PROGRAM ipcc_test_code

C example
CMOR user input

• common_user_input.json 

https://raw.githubusercontent.com/PCMDI/cmor/master/Test/common_user_input.json
https://raw.githubusercontent.com/PCMDI/cmor/master/Test/common_user_input.json

{
"_control_vocabulary_file": "CMIP6_CV.json",
"_cmip6_option": "CMIP6",

"tracking_prefix": "hdl:21.14100",
"activity_id": "ISMIP6",

"branch_method": "standard",
"branch_time_in_child": "365.0",

"#output": "Output Path where files are written",
"outpath": "CMIP6",

"#experiment_id": "CMIP6 valid experiment_ids are found in CMIP6_CV.js
on",

"experiment_id": "piControl-withism",
"sub_experiment_id": "none",
"sub_experiment": "none",

"source_type": "AOGCM ISM AER",
"parent_mip_era": "N/A",
"mip_era": "CMIP6",
"calendar": "360_day",
"branch_time": "1.34",

"realization_index": "11",
"initialization_index": "1",
"physics_index": "1",
"forcing_index": "1",

"#contact ": "Not required",
"contact ": "Python Coder (coder@a.b.c.com)",

"#history": "not required, supplemented by CMOR",
"history": "Output from archivcl_A1.nce/giccm_03_std_2xCO2_225

6.",

"#comment": "Not required",
"comment": "Equilibrium reached after 30-year spin-up after whi

ch data were output starting with nominal date of January 2030",

"#references": "Not required",
"references": "Model described by Koder and Tolkien (J. Geophys. R

es., 2001, 576-591). Also see http://www.GICC.su/giccm/doc/index.html 2XCO2 simulation
described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)'",

"grid": "gs1x1",

"grid_label": "gr",
"nominal_resolution": "5 km",

"institution_id": "PCMDI",

"parent_activity_id": "CMIP",
"parent_experiment_id": "histALL",
"parent_source_id": "GFDL-CM2-1",
"parent_variant_label": "r1i1p1f3",

"#run_variant": "Description of run variant (Recommended).",
"run_variant": "forcing: black carbon aerosol only",

"#source_id": "Model Source",
"source_id": "PCMDI-test-1-0",

"#source": "source title, first part is source_id",
"source": "PCMDI-test 1.0",

"#output_path_template": "Template for output path directory using tables ke
ys or global attributes",

"output_path_template": "<activity_id><institution_id><source_id><experimen
t_id><variant_label><table><variable_id><grid_label><version>",

"output_file_template": "<variable_id><table><experiment_id><source_id><var
iant_label><grid_label>",

"license": "CMIP6 model data produced by PCMDI is licensed un
der a Creative Commons Attribution \"Share Alike\" 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/). Use of the data should be acknowledged following guide
lines found at https://pcmdi.llnl.gov/home/CMIP6/citation.html. [Permissions beyond the s
cope of this license may be available at http://pcmdi.llnl.gov.] Further information abou
t this data, including some limitations, can be found via the further_info_url (recorded
as a global attribute in data files). The data producers and data providers make no warra
nty, either express or implied, including, but not limited to, warranties of merchantabil
ity and fitness for a particular purpose. All liabilities arising from the supply of the
information (including any liability arising in negligence) are excluded to the fullest e
xtent permitted by law."

}

C source code
• ipcc_test_code.c 

https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.c
https://github.com/PCMDI/cmor/blob/master/Test/ipcc_test_code.c

#include <time.h>
#include <stdio.h>
#include<string.h>
#include "cmor.h"
#include <stdlib.h>

void read_coords(alats, alons, plevs, bnds_lat, bnds_lon,lon,lat,lev)
double *alats,*alons;
int *plevs;
double *bnds_lat,*bnds_lon;
int lon,lat,lev;

{
int i;

for (i=0;i<lon;i++) {
alons[i] = i*360./lon;
bnds_lon[2*i] = (i - 0.5)*360./lon;
bnds_lon[2*i+1] = (i + 0.5)*360./lon;

};

for (i=0;i<lat;i++) {
alats[i] = (lat-i)*10;
bnds_lat[2*i] = (lat-i)*10 + 5.;
bnds_lat[2*i+1] = (lat-i)*10 - 5.;

};

plevs[0]=1000;
plevs[1]=925;
plevs[2]=850;
plevs[3]=700;
plevs[4]=600;
plevs[5]=500;
plevs[6]=400;
plevs[7]=300;
plevs[8]=250;
plevs[9]=200;
plevs[10]=150;
plevs[11]=100;
plevs[12]=70;
plevs[13]=50;
plevs[14]=30;
plevs[15]=20;
plevs[16]=10;

}

void read_time(it, time, time_bnds)
int it;
double time[];
double time_bnds[];

{
time[0] = (it-0.5)*30.;
time_bnds[0] = (it-1)*30.;
time_bnds[1] = it*30.;

time[0]=it;
time_bnds[0] = it;
time_bnds[1] = it+1;

}

#include "reader_2D_3D.h"

int main()
/*

/* Purpose: To serve as a generic example of an application that */
/* uses the "Climate Model Output Rewriter" (CMOR) */

/* CMOR writes CF-compliant netCDF files. */
/* Its use is strongly encouraged by the IPCC and is intended for use */
/* by those participating in many community-coordinated standard */
/* climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE, */
/* etc.) */

/* Background information for this sample code: */

/* Atmospheric standard output requested by IPCC are listed in */
/* tables available on the web. Monthly mean output is found in */
/* tables A1a and A1c. This sample code processes only two 3-d */
/* variables listed in table A1c ("monthly mean atmosphere 3-D data" */
/* and only four 2-d variables listed in table A1a ("monthly mean */
/* atmosphere + land surface 2-D (latitude, longitude) data"). The */
/* extension to many more fields is trivial. */

/* For this example, the user must fill in the sections of code that */
/* extract the 3-d and 2-d fields from his monthly mean "history" */
/* files (which usually contain many variables but only a single time */
/* slice). The CMOR code will write each field in a separate file, but */
/* many monthly mean time-samples will be stored together. These */
/* constraints partially determine the structure of the code. */

/* Record of revisions: */

/* Date Programmer(s) Description of change */
/* ==== ========== ===================== */
/* 10/22/03 Rusty Koder Original code */
/* 1/28/04 Les R. Koder Revised to be consistent */
/* with evolving code design */
{

/* dimension parameters: */
/* --------------------------------- */

#define ntimes 2 /* number of time samples to process */
#define lon 4 /* number of longitude grid cells */
#define lat 3 /* number of latitude grid cells */
#define lev 17 /* number of standard pressure levels */
#define n2d 4 /* number of IPCC Table A1a fields to be
/ / output. */
#define n3d 3 /* number of IPCC Table A1c fields to */

/* be output. */

/* Tables associating the user's variables with IPCC standard output */
/* variables. The user may choose to make this association in a */
/* different way (e.g., by defining values of pointers that allow him */
/* to directly retrieve data from a data record containing many */
/* different variables), but in some way the user will need to map his */
/* model output onto the Tables specifying the MIP standard output. */

/* ---------------------------------- */

/* My variable names for IPCC Table A1c fields */
char varin3d[n3d][6]={"CLOUD", "U", "T" };

/* Units appropriate to my data */
char units3d[n3d][6]={"%", "m s-1", "K"};

/* Corresponding IPCC Table A1c entry (variable name) */
char entry3d[n3d][3]={"cl","ua","ta"};

/* My variable names for IPCC Table A1a fields */
char varin2d[n2d][9]={ "LATENT","TSURF","SOIL_WET","PSURF" };

/* Units appropriate to my data */
char units2d[n2d][7]={ "W m-2","K","kg m-2","Pa"};

char positive2d[n2d][4]={"down"," ", " ", " "};

/* Corresponding IPCC Table A1a entry (variable name) */
char entry2d[n2d][6]={"hfls", "tas","mrsos","ps"};

/* uninitialized variables used in communicating with CMOR: */
/* --- */

int error_flag;
int znondim_id, zfactor_id;
int var2d_ids[n2d];
int var3d_ids[n3d];
double data2d[lat*lon];
double data3d[lev*lat*lon];
double alats[lat];
double alons[lon];
int ilats[lat];
int ilons[lon];
double plevs[lev];
int iplevs[lev];
long lplevs[lev];
float fplevs[lev];
double Time[2];
double bnds_time[4];
double bnds_lat[lat*2];
double bnds_lon[lon*2];
double zlevs[lev];
double zlev_bnds[lev+1];

double a_coeff[lev]={ 0.1, 0.2, 0.3, 0.22, 0.1 };
double b_coeff[lev]={ 0.0, 0.1, 0.2, 0.5, 0.8 };
float p0= 1.e5;
double a_coeff_bnds[lev+1]={0.,.15, .25, .25, .16, 0.};
double b_coeff_bnds[lev+1]={0.,.05, .15, .35, .65, 1.};
int ilon, ilat, ipres, ilev, itim;
double dtmp,dtmp2;

/* Other variables: */
/* --------------------- */

int it, m, i,ierr , j;
int myaxes[10];
int myaxes2[10];
int myvars[10];
char id[CMOR_MAX_STRING];
char units[CMOR_MAX_STRING];
char interval[CMOR_MAX_STRING];
char anames[25][CMOR_MAX_STRING];
char type;
char regions[5][23] = { "atlantic_arctic_ocean", "indian_pacific_ocean", "pacific_ocea

n", "global_ocean", "sf_bay"};

double timestest[5];
/* Externals funcs */
int tables[5];
char msg[555];
double bt=0.;
/* ================================ */
/* Execution begins here: */
/* ================================ */

/* Read coordinate information from model into arrays that will be passed */
/* to CMOR. */
/* Read latitude, longitude, and pressure coordinate values into */
/* alats, alons, and plevs, respectively. Also generate latitude and */
/* longitude bounds, and store in bnds_lat and bnds_lon, respectively. */
/* Note that all variable names in this code can be freely chosen by */
/* the user. */

/* The user must write the subroutine that fills the coordinate arrays */
/* and their bounds with actual data. The following line is simply a */
/* a place-holder for the user's code, which should replace it. */

/* *** possible user-written call *** */

m = CMOR_EXIT_ON_MAJOR;
j = CMOR_REPLACE_4;
i=1;
it=0;
printf("ok mode is:%i\n",m);
ierr = cmor_setup(NULL,&j,NULL,&m,NULL,&i);//," ipcc_test.LOG ");

read_coords(&alats[0], &alons[0], &iplevs[0], &bnds_lat[0], &bnds_lon[0],lon,lat,lev);
int tmpmo[12];
printf("Test code: ok init cmor\n");
char c1[CMOR_MAX_STRING];
char c2[CMOR_MAX_STRING];
strcpy(c1,"GICCM1(2002)\0");
strcpy(c2,"Nat\0");

printf("yep: %s, %s\n",c1,c2);
ierr = cmor_dataset_json("Test/common_user_input.json");

printf("Test code: ok load cmor table(s)\n");
ierr = cmor_load_table("Tables/CMIP6_Omon.json",&tables[0]);
ierr = cmor_load_table("Tables/CMIP6_Amon.json",&tables[1]);

strcpy(id,"time");
strcpy(units,"months since 1980");
strcpy(interval,"1 month");

read_time(0, &Time[0], &bnds_time[0]);
read_time(1, &Time[1], &bnds_time[2]);
ierr = cmor_axis(&myaxes[0],id,units,ntimes,&Time[0],'d',&bnds_time[0],2,interval);

strcpy(id,"latitude");
strcpy(units,"degrees_north");
strcpy(interval,"");
ierr = cmor_axis(&myaxes[1],id,units,lat,&alats,'d',&bnds_lat,2,interval);

strcpy(id,"longitude");
strcpy(units,"degrees_east");
ierr = cmor_axis(&myaxes[2],id,units,lon,&alons,'d',&bnds_lon,2,interval);

strcpy(id,"plev17");
strcpy(units,"hPa");
ierr = cmor_axis(&myaxes[3],id,units,lev,&iplevs,'i',NULL,0,interval);

zlevs[0]=0.1;
zlevs[1]= 0.3;
zlevs[2]=0.5;
zlevs[3]= 0.72;
zlevs[4] = 0.9;

zlev_bnds[0]=0.;
zlev_bnds[1]=.2;
zlev_bnds[2]=.42;
zlev_bnds[3]=.62;
zlev_bnds[4]=.8;
zlev_bnds[5]=1.;

/* p0 = 1.e5; */
/* a_coeff = { 0.1, 0.2, 0.3, 0.22, 0.1 }; */
/* b_coeff = { 0.0, 0.1, 0.2, 0.5, 0.8 }; */

/* a_coeff_bnds={0.,.15, .25, .25, .16, 0.}; */
/* b_coeff_bnds={0.,.05, .15, .35, .65, 1.}; */

ierr = cmor_axis(&myaxes[4],"standard_hybrid_sigma","1",5,&zlevs,'d',&zlev_bnds,1,int
erval);

cmor_set_table(tables[0]);
/* ok here we declare a "regions" axis */
printf("Test code: defining axis region \n");

ierr = cmor_axis(&myaxes[5],"basin","",4,®ions[0],'c',NULL,23,interval);

printf("Test code: Redefining time/lat from O table\n");

strcpy(id,"time");
strcpy(units,"months since 1980");
strcpy(interval,"1 month");
read_time(0, &Time[0], &bnds_time[0]);
read_time(1, &Time[1], &bnds_time[2]);
ierr = cmor_axis(&myaxes[7],id,units,ntimes,&Time[0],'d',&bnds_time[0],2,interval);

strcpy(id,"latitude");
strcpy(units,"degrees_north");
strcpy(interval,"");
ierr = cmor_axis(&myaxes[8],id,units,lat,&alats,'d',&bnds_lat,2,interval);

cmor_set_table(tables[1]);

dtmp = -999;
dtmp2=1.e-4;
myaxes2[0] = myaxes[0];
myaxes2[1] = myaxes[3];
myaxes2[2] = myaxes[1];
myaxes2[3] = myaxes[2];

printf("Test code: defining variables from table 1, %s\n",positive2d[0]);
ierr = cmor_variable(&myvars[0],entry2d[0],units2d[0],3,myaxes,'d',NULL,&dtmp2,positive

2d[0],varin2d[0],"no history","no future");
ierr = cmor_variable(&myvars[1],entry3d[2],units3d[2],4,myaxes2,'d',NULL,&dtmp2,NULL,va

rin3d[2],"no history","no future");

printf("Test code: definig tas\n");
ierr = cmor_variable(&myvars[5],"tas","K",3,myaxes,'d',NULL,&dtmp2,NULL,"TS","no histor

y","no future");

myaxes2[1] = myaxes[4];
ierr = cmor_variable(&myvars[2],entry3d[0],units3d[0],4,myaxes2,'d',NULL,&dtmp2,NULL,va

rin3d[0],"no history","no future");
ierr = cmor_zfactor(&myvars[3],myaxes2[1],"p0","Pa",0,NULL,'f',&p0,NULL);
ierr = cmor_zfactor(&myvars[3],myaxes2[1],"b","",1,&myaxes2[1],'d',&b_coeff,&b_coeff_bn

ds);
ierr = cmor_zfactor(&myvars[3],myaxes2[1],"a","",1,&myaxes2[1],'d',&a_coeff,&a_coeff_bn

ds);
/* printf("defining ap\n"); */
/* for(i=0;i<5;i++) {a_coeff[i]*=1.e3;printf("sending acoef: %i, %lf\n",i,a_coef
f[i]);} */
/* for(i=0;i<6;i++) {a_coeff_bnds[i]*=1.e5;printf("sending acoef: %i, %lf\n",i,a_coef

f_bnds[i]);} */
/* ierr = cmor_zfactor(&myvars[3],myaxes2[1],"ap","hPa",1,&myaxes2[1],'d',&a_coeff,&a_c
oeff_bnds); */

ierr = cmor_zfactor(&myvars[3],myaxes2[1],"ps","hPa",3,&myaxes[0],'d',NULL,NULL);

/* ok here we decalre a variable for region axis testing */
cmor_set_table(tables[0]);
myaxes2[0] = myaxes[7]; /* time */
myaxes2[1] = myaxes[5]; /* region */
myaxes2[2] = myaxes[8]; /* latitudes */
printf("Test code: ok we define hfogo positive: %s\n",positive2d[0]);
ierr = cmor_variable(&myvars[4],"htovgyre","W",3,myaxes2,'d',NULL,&dtmp2,NULL,varin2

d[0],"no history","no future");

cmor_set_table(tables[1]);

for (i=0;i<ntimes;i++) {
printf("Test code: writing time: %i of %i\n",i+1,ntimes);

printf("2d\n");
read_2d_input_files(i, varin2d[0], &data2d,lat,lon);
sprintf(id,"%i",i);
ierr = cmor_write(myvars[0],&data2d,'d',1,NULL,NULL,NULL);

printf("3d\n");
read_3d_input_files(i, varin3d[2], &data3d,lev,lat,lon);
ierr = cmor_write(myvars[1],&data3d,'d',1,NULL,NULL,NULL);
printf("writing tas\n");
read_2d_input_files(i, varin2d[1], &data2d,lat,lon);
ierr = cmor_write(myvars[5],&data2d,'d',1,NULL,NULL,NULL);

printf("3d zfactor\n");
read_3d_input_files(i, varin3d[0], &data3d,5,lat,lon);
ierr = cmor_write(myvars[2],&data3d,'d',1,NULL,NULL,NULL);

printf("writing ps\n");
read_2d_input_files(i, varin2d[3], &data2d,lat,lon);
ierr = cmor_write(myvars[3],&data2d,'d',1,NULL,NULL,&myvars[2]);

/* rereading hfls to fake hfogo */
printf("2d region\n");
read_2d_input_files(i, "htov", &data2d,lat,lon);
ierr = cmor_write(myvars[4],&data2d,'d',1,NULL,NULL,NULL);

}
ierr = cmor_close_variable(myvars[0],NULL,NULL);
ierr = cmor_close();

return(0);
}

Control Vocabulary (CMIP6)
CMIP6 Control vocabulary minimum requirements.

• CMOR 3 required a new Control Vocabulary file which must contains 4 mandatory keys
for CMIP6.

◦ institutions_ids: A dictionary of of registered institution IDs with a description.
◦ source_ids: A dictionary of registered source IDS (model) with a specific

description.
◦ experiment_ids: A dictionary of experiment_ids (CMIP6) pointing to a dictionary

of specific metadata.
◦ grid_labels: A dictionary of grid labels(gr, gn, …) pointing to a grid_resolution for

the selected grid.
Example

{
"CV": {

"institution_ids": { "BNU":"GCESS, BNU, Beijing, China" },
"source_ids": { "CESM1-CAM5": "CESM1 (CAM5): model version ca. 2009" },
"experiment_ids": { "piControl": { } },
"grid_labels": { "gr": { "grid_resolution":"5 km" } }

}
}

To register, activities, sources or institutions
• Contact: cmor@listserv.llnl.gov (mailto:cmor@listserv.llnl.gov)

CMIP6 required global attributes
• CMIP6_CV.json 

mailto:cmor@listserv.llnl.gov
https://github.com/PCMDI/cmor/blob/master/TestTables/CMIP6_CV.json
https://github.com/PCMDI/cmor/blob/master/TestTables/CMIP6_CV.json

"required_global_attributes":
[
"variant_label",
"activity_id",
"branch_method",
"Conventions",
"creation_date",
"mip_era",
"data_specs_version",
"experiment_id",
"experiment",
"forcing_index",
"further_info_url",
"frequency",
"grid",
"grid_label",
"grid_resolution",
"initialization_index",
"institution",
"institution_id",
"license",
"physics_index",
"product",
"realization_index",
"realm",
"variant_label",
"source",
"source_id",
"source_type",
"sub_experiment",
"sub_experiment_id",
"table_id",
"tracking_id",
"variable_id"
],

• CMOR validates required attributes using list of values or regular expression(REGEX)

"required_parent_attributes": [
"parent_experiment_id"
],

"variant_label": ["^r[[:digit:]]\\{1,\\}i[[:digit:]]\\{1,\\}p[[:digi
t:]]\\{1,\\}f[[:digit:]]\\{1,\\}$"],

"sub_experiment_id": ["^s[[:digit:]]\\{4,4\\}$", "none"],

"product": ["output"] ,

"mip_era": ["CMIP6"],

"frequency": ["3hr", "6hr", "day", "fx", "mon", "monClim", "subhr", "yr"],

"further_info_url": ["http://furtherinfo.es-doc.org/[[:alpha:]]\\{1,\\}"],

Registered activities

"activity_id": [
"DECK",
"AerChemMIP",
"C4MIP",
"CFMIP",
"CMIP",
"CORDEX",
"DAMIP",
"DCPP",
"DynVar",
"FAFMIP",
"GMMIP",
"GeoMIP",
"HighResMIP",
"ISMIP6",
"LS3MIP",
"LUMIP",
"OMIP",
"PDRMIP",
"PMIP",
"RFMIP",
"SIMIP",
"ScenarioMIP",
"SolarMIP",
"VIACSAB",
"VolMIP",
"LS3MIP LUMIP",
"RFMIP, AerChemMIP",
"ScenarioMIP AerChemMIP",
"ScenarioMIP AerChemMIP LUMIP"
],

Registered sources

"source_ids": {
"ACCESS1-0": "ACCESS1.0: adaptation of unified model with interactive chemistry

(ca. 2012)" ,
"AWI-CM": "AWI-CM:",
"BCC": "BCC:",
"BESM": "BESM:",
"BNU": "BNU:",
"CAMS-CSM": "CAMS-CSM:",
"CAS-ESM": "CAS-ESM:",
"CESM1-CAM5": "CESM1 (CAM5): model version ca. 2009",
"CESS-THU": "CESS-THU:",
"CMCC": "CMCC:",
"CNRM": "CNRM:",
"CanESM": "CanESM:",
"EC-Earth": "EC-Earth:",
"FGOALS": "FGOALS:",
"FIO": "FIO:",
"GFDL-CM2-1": "GFDL CM2.1",
"GISS": "GISS:",
"HadGEM3": "HadGEM3:",
"IITM": "IITM:",
"INM": "INM:",
"IPSL": "IPSL:",
"KMA-ACE": "KMA-ACE:",
"MIROC-ESM": "MIROC-ESM:",
"MIROC6-CGCM": "MIROC6-CGCM:",
"MPI-ESM": "MPI-ESM:",
"MRI-AGCM3-xS": "MRI-AGCM3-xS:",
"MRI-ESM1-x": "MRI-ESM1-x:",
"NICAM": "NICAM:",
"NUIST-CSM": "NUIST-CSM:",
"NorESM": "NorESM:",
"UKESM": "UKESM:",
"UKESM--KMA": "UKESM--KMA:"
},

Registered institutions

"institution_ids": {
"NOAA-GFDL":"NOAA Geophysical Fluid Dynamics Laboratory",
"BCC":"Beijing Climate Center,China Meteorological Administration,China",
"BNU":"GCESS,BNU,Beijing,China",
"CCCma":"Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Ca

nada",
"CMCC":"Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Ital

y",
"CNRM-CERFACS":"Centre National de Recherches Meteorologiques, Meteo-France,

Toulouse, France) and CERFACS (Centre Europeen de Recherches et de Formation Avancee en C
alcul Scientifique, Toulouse, France",

"COLA-CFS":"Center for Ocean-Land-Atmosphere Studies, Calverton, MD",
"CSIRO-BOM":"Commonwealth Scientific and Industrial Research Organisation, Au

stralia, and Bureau of Meteorology, Australia",
"CSIRO-QCCCE":"Australian Commonwealth Scientific and Industrial Research Org

anization (CSIRO) Marine and Atmospheric Research (Melbourne, Australia) in collaboratio
n with the Queensland Climate Change Centre of Excellence (QCCCE) (Brisbane, Australia)",

"FIO":"The First Institution of Oceanography,SOA,Qingdao,China",
"ICHEC":"European Earth System Model",
"INM":"Institute for Numerical Mathematics, Moscow, Russia",
"IPSL":"Institut Pierre Simon Laplace, Paris, France",
"LASG-CESS":"Institute of Atmospheric Physics, Chinese Academy of Sciences, B

eijing, China and Tsinghua University",
"LASG-IAP":"Institute of Atmospheric Physics, Chinese Academy of Sciences,Bei

jing,China",
"MIROC":"AORI (Atmosphere and Ocean Research Institute, The University of Tok

yo, Chiba, Japan), NIES (National Institute for Environmental Studies, Ibaraki, Japan), J
AMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan)",

"MIROC":"JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanag
awa, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chib
a, Japan), and NIES (National Institute for Environmental Studies, Ibaraki, Japan)",

"MOHC":"Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK.",
"MPI-M":"Max Planck Institute for Meteorology",
"MRI":"Meteorological Research Institute, Tsukuba, Japan",
"NASA-GISS":"Goddard Institute for Space Studies, New York, NY",
"NASA-GMAO":"Global Modeling and Assimilation Office, NASA Goddard Space Flig

ht Center, Greenbelt, MD 20771",
"NCAR":"National Center for Atmospheric Research, Boulder, CO, USA",
"NCC":"Norwegian Climate Centre",
"NICAM":"Nonhydrostatic Icosahedral Atmospheric Model (NICAM) Group (RIGC-JAM

STEC/AORI-U.Tokyo/AICS-RIKEN,Japan)",
"NIMR-KMA":"National Institute of Meteorological Research, Seoul, South Kore

a",
"NOAA-GFDL":"NOAA GFDL, 201 Forrestal Rd, Princeton, NJ, 08540",
"NOAA-NCEP":"National Centers for Environmental Prediction, Camp Springs, M

D",
"NSF-DOE-NCAR":"National Center for Atmospheric Research, Boulder, CO, USA",

"NSF-DOE-NCAR":"PNNL (Pacific Northwest National Laboratory) Richland, WA, US
A/NCAR (National Center for Atmospheric Research) Boulder, CO, USA",

"NSF-DOE-NCAR":"NSF/DOE NCAR (National Center for Atmospheric Research) Bould
er, CO, USA"

},

valid grids

"grid_labels": {

"gs1x1": { "grid_resolution":"1x1" },
"gs1x1 gn": { "grid_resolution":"1x1" },
"gs1x1 gr": { "grid_resolution":"1x1" },
"gn": { "grid_resolution":["5 km", "10 km", "25 km", "50 km", "100 k

m", "250 km",
"500 km", "1000 km", "2500 km", "5000 km", "10000 km"] },

"gr": { "grid_resolution":["5 km", "10 km", "25 km", "50 km", "100 k
m", "250 km",

"500 km", "1000 km", "2500 km", "5000 km", "10000 km"] }

},

Registered experiments

experiment_ids": {

"hist-piNTCF": {
"experiment": "historical forcing, but wit

h pre-industrial NTCF emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM AER CHEM",
"additional_source_type": "BGM"

},

"hist-piAer": {
"experiment": "historical forcing, but wit

h pre-industrial aerosol emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM AER",
"additional_source_type": "CHEM BGM"

},

"hist-1950HC": {
"experiment": "historical forcing, but with

1950s halocarbon concentrations; initialized in 1950",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM AER CHEM",
"additional_source_type": "BGM"

},

"histSST": {
"experiment": "historical prescribed SSTs a

nd historical forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"histSST-piNTCF": {

"experiment": "historical SSTs and historic
al forcing, but with pre-industrial NTCF emissions",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"histSST-piAer": {
"experiment": "historical SSTs and historic

al forcing, but with pre-industrial aerosol emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"histSST-piO3": {
"experiment": "historical SSTs and historic

al forcing, but with pre-industrial ozone precursor emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"histSST-1950HC": {
"experiment": "historical SSTs and historic

al forcing, but with1950 halocarbon concentrations",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"histSST-piCH4": {
"experiment": "historical SSTs and historic

al forcing, but with pre-industrial methane concentrations",
"sub_experiment_id": "none",

"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"histSST-piN2O": {
"experiment": "historical SSTs and historic

al forcings, but with pre-industrial N2O concentrations",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": "BGM"

},

"ssp370-lowNTCF": {
"experiment": "SSP3-7.0, with low NTCF emis

sions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM AER",
"additional_source_type": "CHEM BGM"

},

"ssp370SST": {
"experiment": "SSP3-7.0, with SSTs prescri

bed from ssp370",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"ssp370SST-lowNTCF": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith low NTCF emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",

"additional_source_type": ""

},

"ssp370SST-lowAer": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith low aerosol emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"ssp370SST-lowBC": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith low black carbon emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"ssp370SST-lowO3": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith low ozone precursor emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"ssp370SST-lowCH4": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith low methane concentrations",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"ssp370SST-ssp126Lu": {
"experiment": "SSP3-7.0, prescribed SSTs, w

ith SSP1-2.6 land use",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-NTCF": {
"experiment": "pre-industrial climatolgica

l SSTs and forcing, but with 2014 NTCF emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-aer": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but 2014 aerosol emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-BC": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 black carbon emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-O3": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 ozone precursor emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-CH4": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 methane concentrations (including chemistry)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-N2O": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 N2O concentrations (including chemistry)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-HC": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 halocarbon concentrations (including chemistry)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-NOX": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 NOx emissions",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-VOC": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with 2014 VOC emissions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-2xdust": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled emissions of dust",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-2xss": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled emissions of sea salt",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-2xDMS": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled emissions of DMS",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-2xfire": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled emissions from fires",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER",
"additional_source_type": "CHEM"

},

"piClim-2xNOX": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled production of NOX due to lightning",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"piClim-2xVOC": {
"experiment": "pre-industrial climatologica

l SSTs and forcing, but with doubled emissions of biogenic VOCs",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM AER CHEM",
"additional_source_type": ""

},

"1pctCO2-bgc": {
"experiment": "biogeochemically-coupled ver

sion of 1 percent per year increasing CO2 experiment",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"1pctCO2Ndep": {
"experiment": "1 percent per year increasin

g CO2 experient with increasing N-deposition",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM BGM"

},

"1pctCO2Ndep-bgc": {
"experiment": "biogeochemically-coupled ver

sion of 1 percent per year increasing CO2 experiment with increasing N-deposition",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"1pctCO2-rad": {
"experiment": "radiatively-coupled version

of 1 percent per year increasing CO2 experiment",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"hist-bgc": {
"experiment": "biogeochemically-coupled ver

sion of the simulation of the recent past with CO2 concentration prescribed ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"esm-ssp585": {
"experiment": "emission-driven RCP8.5 base

d on SSP5",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"ssp585-bgc": {
"experiment": "biogeochemically-coupled ver

sion of the RCP8.5 based on SSP5",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"ssp585-over-bgc": {
"experiment": "biogeochemically-coupled ver

sion of the RCP3.4-overshoot based on SSP5",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM BGM",
"additional_source_type": "AER CHEM"

},

"abrupt-0p5xCO2": {
"experiment": "abrupt halving of CO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"abrupt-2xCO2": {
"experiment": "abrupt doubling of CO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"abrupt-solm4p": {
"experiment": "abrupt 4% decrease in solar

constant",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"abrupt-solp4p": {
"experiment": "abrupt 4% increase in solar

constant",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-p4K": {
"experiment": "AMIP with uniform 4K SST inc

rease",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-4xCO2": {
"experiment": "AMIP SSTs with 4xCO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-future4K": {

"experiment": "AMIP with patterned 4K SST i
ncrease",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-m4K": {
"experiment": "AMIP with uniform 4K SST dec

rease",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-piForcing": {
"experiment": "AMIP SSTs with pre-industria

l anthro and natural forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"aqua-p4K": {
"experiment": "aquaplanet with uniform 4K S

ST increase",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"aqua-4xCO2": {
"experiment": "aquaplanet with control SST

and 4xCO2",
"sub_experiment_id": "none",

"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"aqua-control": {
"experiment": "aquaplanet control",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-lwoff": {
"experiment": "AMIP experiment with longwav

e cloud-radiative effects off",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-p4K-lwoff": {
"experiment": "AMIP experiment with unifor

m 4K SST increase and with longwave cloud radiative effects off",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"aqua-p4K-lwoff": {
"experiment": "aquaplanet with uniform 4K S

ST increase and with longwave cloud radiative effects off",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"aqua-control-lwoff": {
"experiment": "aquaplanet control with long

wave cloud radiative effects off",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piSST": {
"experiment": "experiment forced with pre-i

ndustrial SSTs, sea ice and atmospheric constituents.",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piSST-pxK": {
"experiment": "as piSST with uniform SST in

crease with magnitude based on abrupt4xCO2 response",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piSST-4xCO2-rad": {
"experiment": "as piSST with radiation-onl

y seeing 4xCO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piSST-4xCO2": {
"experiment": "as piSST with radiation and

vegetation seeing 4xCO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"a4SST": {
"experiment": "as piSST but with SSTs from

abrupt4xCO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"a4SSTice": {
"experiment": "as piSST but with SSTs and s

ea ice from abrupt4xCO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"a4SSTice-4xCO2": {
"experiment": "as piSST but with SSTs and s

ea ice from abrupt4xCO2, and 4xCO2 seen by radiation and vegetation.",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-a4SST-4xCO2": {
"experiment": "as AMIP but with warming pat

tern from abrupt4xCO2 added to SSTs and 4xCO2 seen by radiation and vegetation",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"1pctCO2": {
"experiment": "1 percent per year increase

in CO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"abrupt-4xCO2": {
"experiment": "abrupt quadrupling of CO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"amip": {
"experiment": "AMIP",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piControl": {
"experiment": "pre-industrial control",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"esm-piControl": {
"experiment": "pre-industrial control simul

ation with CO2 concentration calculated",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"piControl-spinup": {
"experiment": "pre-industrial control (spi

n-up)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"esm-piControl-spinup": {
"experiment": "pre-industrial control simul

ation with CO2 concentration calculated (spiin-up)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"historical": {
"experiment": "all-forcing simulation of th

e recent past",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"esm-hist": {

"experiment": "all-forcing simulation of th
e recent past with atmospheric CO2 concentration calculated ",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"historical-ext": {
"experiment": "post-2014 all-forcing simula

tion",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"esm-hist-ext": {
"experiment": "post-2014 all-forcing simula

tion with atmospheric CO2 concentration calculated",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"hist-aer": {
"experiment": "historical anthropogenic aer

osols-only run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-CO2": {
"experiment": "historical CO2-only run",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-all-aer2": {
"experiment": "historical ALL-forcing run w

ith alternate estimates of aerosol forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-all-nat2": {
"experiment": "historical ALL-forcing run w

ith alternate estimates of natural forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-GHG": {
"experiment": "historical well-mixed GHG-on

ly run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-nat": {
"experiment": "historical natural-only ru

n",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-sol": {
"experiment": "historical solar-only run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-stratO3": {
"experiment": "historical stratospheric-ozo

ne-only run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"hist-volc": {
"experiment": "historical volcanic-only ru

n",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"ssp245-aer": {
"experiment": "aerosol-only SSP2-4.5 run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"ssp245-GHG": {
"experiment": "well-mixed GHG-only SSP

2-4.5 run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"ssp245-nat": {
"experiment": "natural-only SSP2-4.5 run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"ssp245-stratO3": {
"experiment": "stratospheric-ozone-only SSP

2-4.5 run",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM, BGM"

},

"dcppA-hindcast": {
"experiment": "year 1-5 hindcast initialize

d based on observations and using historical forcing",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppA-historical": {
"experiment": "climate simulations initiali

zed from control with forcing prescribed from the historical period and future scenario a
s in A1",

"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppA-assim": {
"experiment": "assimilation runs (if availa

ble) that are used to generate initial conditions for hindcasts and which parallel the hi
storical simulations and use the same forcing ",

"sub_experiment_id": "initialized near end of yea
r YYYY",

"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppA-hindcast-niff": {
"experiment": "hindcast initialized from ob

servations without future observed forcing after initialization",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppA-historical-niff": {
"experiment": "hindcast initialized from hi

storical climate simulations without observed forcing after initialization",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppB-forecast": {
"experiment": "year 1-5 forecast initialize

d from observations",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-atl-control": {
"experiment": "idealized Atlantic control",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-plus": {
"experiment": "idealized positive AMV anoma

ly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-minus": {
"experiment": "idealized negative AMV anoma

ly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-pac": {
"experiment": "idealized Pacific control",

"sub_experiment_id": "initialized near end of yea
r YYYY",

"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-ipv-plus": {
"experiment": "idealized positive IPV anoma

ly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-ipv-minus": {
"experiment": "idealized negative IPV anoma

ly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-extrop-plus": {
"experiment": "idealized positive extratrop

ical AMV anomaly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-extrop-minus": {
"experiment": "idealizedÊ impact of a negat

ive extratropical AMV anomaly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-trop-plus": {
"experiment": "idealized positive tropical

AMV anomaly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-amv-trop-minus": {
"experiment": "idealized impact of a positi

ve tropical AMV anomaly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-ipv-nextrop-plus": {
"experiment": "idealized impact of a positi

ve northern extratropical IPV anomaly pattern",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-ipv-nextrop-minus": {

"experiment": "idealized impact of a negati
ve northern extratropical IPV anomaly pattern",

"sub_experiment_id": "initialized near end of yea
r YYYY",

"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-pac-pacemaker": {
"experiment": "pacemaker pacific experimen

t",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-atl-pacemaker": {
"experiment": "pacemaker atlantic experimen

t ",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-atl-spg": {
"experiment": "predictability of 1990s warm

ing of Atlantic sub-polar gyre",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-hindcast-noPinatubo": {
"experiment": "hindcast but with only backg

round volcanic forcing",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-hindcast-noElChichon": {
"experiment": "",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-hindcast-noAgung": {
"experiment": "",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-forecast-addPinatubo": {
"experiment": "2015 forecast with added Pin

atubo forcing",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-forecast-addElChichon": {

"experiment": "2015 forecast with added El
Chichon forcing",

"sub_experiment_id": "initialized near end of yea
r YYYY",

"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"dcppC-forecast-addAgung": {
"experiment": "2015 forecast with added Agu

ng forcing",
"sub_experiment_id": "initialized near end of yea

r YYYY",
"activity_id": "",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"faf-all": {
"experiment": "control plus perturbative su

rface fluxes of momentum, heat and water into ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"faf-heat": {
"experiment": "control plus perturbative su

rface flux of heat into ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"faf-passiveheat": {
"experiment": "control plus surface flux o

f passive heat tracer into ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"faf-stress": {
"experiment": "control plus perturbative su

rface flux of momentum into ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"faf-water": {
"experiment": "control plus perturbative su

rface flux of water into ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"G1": {
"experiment": "abrupt quadrupling of CO2 pl

us reduction in total solar irradiance",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"piSST-4xCO2-solar": {
"experiment": "preindustrial conrol SSTs wi

th quadrupled CO2 + solar reduction. ",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"futureSST-4xCO2-solar": {
"experiment": "year 100 SSTs from abrupt4xC

O2 with quadrupled CO2 + solar reduction",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"G6SST1": {
"experiment": "SSTs, forcings, and other pr

escribed conditions from year 2020 of SSP5-8.5",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"G6solar": {
"experiment": "total solar irradiance reduc

tion to reduce net forcing from SSP585 to SSP245",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"G6SST2-solar": {
"experiment": "SSTs from year 2020 of SSP

5-8.5; forcings and other prescribed conditions from year 2100 of G6solar",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"G6sulfur": {
"experiment": "stratospheric sulfate aeroso

l injection to reduce net forcing from SSP585 to SSP245",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"G6SST2-sulfur": {
"experiment": "SSTs from year 2020 of SSP

5-8.5; forcings and other prescribed conditions from year 2100 of G6sulfur",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"G7cirrus": {
"experiment": "G7cirrus _ increase cirrus i

ce crystal fall speed to reduce net forcing in SSP585 by 1 W m-2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"G7SST1-cirrus": {
"experiment": "SSTs from year 2020 of SSP

5-8.5; forcings and other prescribed conditions from year 2020 of SSP5-8.5 + cirrus thinn
ing",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"G7SST2-cirrus": {
"experiment": "SSTs from year 2100 of SSP

5-8.5; forcings and other prescribed conditions from year 2100 of G7cirrus",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-hist": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-hld": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-TIP": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-TIP-nosh": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",

"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"hist-resAMO": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"hist-resIPO": {
"experiment": "",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"control-1950": {
"experiment": "coupled control with fixed 1

950's forcing (HighResMIP equivalent of pre-industrial control)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"highres-future": {
"experiment": "coupled future 2015-2050 usi

ng a scenario as close to CMIP5 RCP8.5 as possible within CMIP6",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"hist-1950": {
"experiment": "coupled historical 1950-201

4",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"highresSST-present": {
"experiment": "forced atmosphere experimen

t for 1950-2014",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"highresSST-future": {
"experiment": "forced atmosphere experimen

t for 2015-2050 using SST/sea-ice derived from CMIP5 RCP8.5 simulations and a scenario a
s close to RCP8.5 as possible within CMIP6",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"highresSST-LAI": {
"experiment": "common LAI dataset within th

e highresSST-present experiment",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"highresSST-smoothed": {
"experiment": "smoothed SST version of high

resSST-present",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"highresSST-p4K": {
"experiment": "uniform 4K warming of highre

sSST-present SST",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"highresSST-4co2": {
"experiment": "highresSST-present SST with

4xCO2 concentrations",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"ism-1pctCO2to4x-std": {
"experiment": "offline ice sheet model forc

ed by ISMIP6-specified AOGCM 1pctCO2to4x output ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ism-1pctCO2to4x-self": {
"experiment": "offline ice sheet model forc

ed by ISM's own AOGCM 1pctCO2to4x output ",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"1pctCO2to4x-withism": {
"experiment": "simulation with interactive

ice sheet forced by 1 percent per year increase in CO2 to 4xCO2 (subsequently held fixe
d)",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM ISM",
"additional_source_type": "AER CHEM BGM"

},

"ism-pdControl-std": {
"experiment": "offline ice sheet forced by

ISMIP6-specified AOGCM pdControl output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ism-piControl-self": {
"experiment": "offline ice sheet forced by

ISM's own AOGCM piControl output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"piControl-withism": {
"experiment": "preindustrial control with i

nteractive ice sheet",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM ISM",

"additional_source_type": "AER CHEM BGM"

},

"ism-historical-std": {
"experiment": "offline ice sheet forced by

ISMIP6-specified AOGCM historical output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ism-historical-self": {
"experiment": "offline ice sheet forced by

ISM's own AOGCM historical output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"historical-withism": {
"experiment": "historical with interactive

ice sheet",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM ISM",
"additional_source_type": "AER CHEM BGM"

},

"ism-ssp585-std": {
"experiment": "offline ice sheet forced by

ISMIP6-specified AOGCM ssp585 output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ism-ssp585-self": {
"experiment": "offline ice sheet forced by

ISM's own AOGCM ssp585 output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ssp585-withism": {
"experiment": "ssp585 with interactive ice

sheet",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM ISM",
"additional_source_type": "AER CHEM BGM"

},

"ism-amip-std": {
"experiment": "offline ice sheet forced by

ISMIP6-specified AGCM AMIP output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"ism-lig127k-std": {
"experiment": "offline ice sheet forced by

ISMIP6-specified AGCM last interglacial output",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ISM",
"additional_source_type": ""

},

"amip-lfmip-pObs": {
"experiment": "prescribed land (from pseud

o-observations) and AMIP SSTs",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"amip-lfmip-pdLC": {
"experiment": "prescribed land (from curren

t climatology) and AMIP SSTs",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"lfmip-pdLC": {
"experiment": "prescribed land conditions

(from current climate climatology) and initialized from 'historical' run year 1980",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"lfmip-initLC": {
"experiment": "initialized from 'historica

l' run year 1980, but with land conditions initialized from pseudo-observations",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"amip-lfmip-rmLC": {
"experiment": "prescribed land conditions

(from running mean climatology) and AMIP SSTs",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"lfmip-rmLC": {
"experiment": "prescribed land conditions

(from running mean climatology) and initialized from 'historical' run year 1980",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"land-future": {
"experiment": "future land-only",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-hist": {
"experiment": "historical land-only",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-hist-princeton": {
"experiment": "as land-hist with Princeton

forcings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-hist-cruNcep": {
"experiment": "as land-hist with CRU-NCEP f

orcings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-hist-wfdei": {
"experiment": "as land-hist with WFDEI forc

ings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"esm-ssp585-ssp126Lu": {
"experiment": "emissions-driven SSP5-8.5 wi

th SSP1-2.6 land use",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "ESM",
"additional_source_type": "AER CHEM"

},

"hist-noLu": {
"experiment": "historical with no land-use

change",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"deforest-globe": {
"experiment": "idealized transient global d

eforestation",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"land-hist-altStartYear": {
"experiment": "historical land-only alterna

te start year",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-cCO2": {
"experiment": "historical land-only constan

t CO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-cClim": {
"experiment": "historical land-only constan

t climate",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-noLu": {
"experiment": "historical land-only with n

o land-use change",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-crop-noManage": {
"experiment": "historical land-only with cr

ops but no crop management",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-netTrans": {
"experiment": "historical land-only with ne

t land-use transitions",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-noFire": {
"experiment": "historical land-only with n

o human fire management",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-noWoodHarv": {
"experiment": "historical land-only with n

o wood harvest",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-noPasture": {
"experiment": "historical land-only with co

nstant pastureland",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-crop-grass": {
"experiment": "historical land-only with cr

opland as natural grassland",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-crop-noIrrig": {
"experiment": "historical land-only with n

o irrigation ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"land-crop-noFert": {
"experiment": "historical land-only with n

o fertilizer",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "LND",
"additional_source_type": ""

},

"ssp126-ssp370Lu": {
"experiment": "SSP1-2.6 with SSP3-7.0 land

use",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp370-ssp126Lu": {
"experiment": "SSP3-7.0 with SSP1-2.6 land

use",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"omipv1": {
"experiment": "OMIP experiment forced by La

rge & Yeager (CORE-2, NCEP) atmospheric data set and initialized with observed physical a
nd biogeochemical ocean data",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "OGCM",
"additional_source_type": ""

},

"omipv1-spunup": {
"experiment": "OMIP experiment forced by La

rge & Yeager (CORE-2, NCEP) atmospheric data set and initialized from at least a 2000-yea
r spin up of the coupled physical-biogeochemical model",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "OGCM",
"additional_source_type": ""

},

"omipv2": {

"experiment": "OMIP experiment forced by JR
A-55 atmospheric data set and initialized with observed physical and biogeochemical ocea
n data",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "OGCM",
"additional_source_type": ""

},

"omipv2-spunup": {
"experiment": "OMIP experiment forced by JR

A-55 atmospheric data set and initialized from at least a 2000-year spin up of the couple
d physical-biogeochemical model",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "OGCM",
"additional_source_type": ""

},

"lgm": {
"experiment": "last glacial maximum ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"lig127k": {
"experiment": "last interglacial (127k)",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"midHolocene": {
"experiment": "mid-Holocene",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"past1000": {
"experiment": "last millenium",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"midPliocene-eoi400": {
"experiment": "mid-Pliocene warm period",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"piClim-control": {
"experiment": "effective radiative forcing

in present-day ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-4xCO2": {
"experiment": "effective radiative forcing

by 4xCO2 ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-aerO3": {
"experiment": "effective radiative forcing

by present-day aerosols and ozone",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-aerO3x0p1": {
"experiment": "effective radiative forcing

by present-day aerosols and ozone scaled by 0.1 ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-aerO3x2": {
"experiment": "effective radiative forcing

by present-day aerosols and ozone scaled by 2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-anthro": {
"experiment": "effective radiative forcing

by present day anthropogenic agents",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-GHG": {
"experiment": "effective radiative forcing

by present-day greenhouse gases",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-histaer03": {
"experiment": "transient effective radiativ

e forcing by aerosols ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-histAll": {
"experiment": "transient effective radiativ

e forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-histGHG": {
"experiment": "transient effective radiativ

e forcing by greenhouse gases",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-histNat": {
"experiment": "transient effective radiativ

e forcing by natural perturbations",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-lu": {
"experiment": "effective radiative forcing

by present-day land use ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": "AER CHEM"

},

"piClim-spAerO3-histall": {
"experiment": " transient effective radiati

ve forcing with specified anthropogenic aerosol optical properties, all forcings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": ""

},

"piClim-spAerO3-histaer": {
"experiment": "transient effective radiativ

e forcing with specified anthropogenic aerosol optical properties, aerosol forcing",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": ""

},

"piClim-spAerO3-aer": {
"experiment": "effective radiative forcing

at present day with specified anthropogenic aerosol optical properties, all forcings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": ""

},

"piClim-spAerO3-anthro": {
"experiment": "effective radiative forcing

at present day with specified anthropogenic aerosol optical properties, anthropogenic for
cings",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM",
"additional_source_type": ""

},

"hist-spAerO3": {
"experiment": "historical simulations with

specified anthropogenc aerosols, no other forcings",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": ""

},

"hist-all-spAerO3": {
"experiment": "historical simulations with

specified anthropogenc aerosols ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": ""

},

"rad-irf": {
"experiment": "offline assessment of radiat

ive transfer parmaeterizations in clear skies",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "RAD",
"additional_source_type": ""

},

"ssp126": {
"experiment": "update of RCP2.6 based on SS

P1",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp534-over": {
"experiment": "overshoot of 3.4 W/m**2 bran

ching from ssp585 in 2040",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp460": {
"experiment": "update of RCP6.0 based on SS

P4",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp245": {
"experiment": "update of RCP4.5 based on SS

P2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp370": {
"experiment": "gap-filling scenario reachin

g 7.0 based on SSP3",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp434": {
"experiment": "gap-filling scenario reachin

g 3.4 based on SSP4",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"ssp585": {
"experiment": "update of RCP8.5 based on SS

P5",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"sspxy": {
"experiment": "low-end scenario informing

1.5C goal",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-cluster-ctrl": {
"experiment": "19th century volcanic cluste

r initialized from PiControl",
"sub_experiment_id": "none",
"activity_id": "1",

"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-cluster-mill": {
"experiment": "19th century volcanic cluste

r initialized from past1000",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-long-eq": {
"experiment": "idealized equatorial volcani

c eruption emitting 56.2 Tg SO2 ",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-long-hlN": {
"experiment": "idealized Northern Hemispher

e high-latitude eruption emitting 28.1 Tg of SO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-pinatubo-full": {
"experiment": "Pinatubo experiment",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-pinatubo-ini": {
"experiment": "Pinatubo experiment for deca

dal climate prediction",
"sub_experiment_id": "initialized near end of yea

r 2014",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"control-slab": {
"experiment": "control with slab ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM SLAB",
"additional_source_type": "AER CHEM BGM"

},

"volc-pinatubo-slab": {
"experiment": "Pinatubo experiment with sla

b ocean",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AGCM SLAB",
"additional_source_type": "AER CHEM BGM"

},

"volc-pinatubo-strat": {
"experiment": "Pinatubo experiment with par

tial radiative forcing, includes only stratospheric warming",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-pinatubo-surf": {

"experiment": "Pinatubo experiment with par
tial radiative forcing, solar radiation scattering only",

"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-cluster-21C": {
"experiment": "volcanic cluster experiment

under 21st century SSP2-4.5 scenario",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

},

"volc-long-hlS": {
"experiment": "Idealized Southern Hemispher

e high-latitude eruption emitting 28.1 Tg of SO2",
"sub_experiment_id": "none",
"activity_id": "1",
"mip_era": "CMIP6",
"source_type": "AOGCM",
"additional_source_type": "AER CHEM BGM"

}
}

CMIP6 Table Excerpt
Header

"Header": {
"mip_era": "CMIP6",
"approx_interval": "30.00000",
"realm": "atmos",
"product": "output",
"cmor_version": "3.0",
"Conventions": "CF-1.6 CMIP-6.0",
"frequency": "mon",
"table_id": "Table Amon",
"data_specs_version": "3.0",
"generic_levels": "alevel alevhalf",
"missing_value": "1e20",
"table_date": "01 April 2016"

},

axis_entry

"axis_entry": {
"forecast": {

"stored_direction": "increasing",
"must_have_bounds": "no",
"long_name": "ensemble time axis",
"standard_name": "time",
"out_name": "forecast",
"type": "double",
"units": "days since 1900-01-01",
"value": "0.0",
"axis": "T"

},
"plev17": {

"requested": [
"100000.",
"92500.",
"85000.",
"70000.",
"60000.",
"50000.",
"40000.",
"30000.",
"25000.",
"20000.",
"15000.",
"10000.",
"7000.",
"5000.",
"3000.",
"2000.",
"1000."

],
"stored_direction": "decreasing",
"z_factors": "",
"positive": "down",
"must_have_bounds": "no",
"valid_min": "",
"requested_bounds": "",
"z_bounds_factors": "",
"bounds_values": "",
"long_name": "pressure",
"standard_name": "air_pressure",
"value": "",
"out_name": "plev",
"type": "double",
"units": "Pa",
"formula": "",

"climatology": "",
"tolerance": "0.001",
"valid_max": "",
"axis": "Z"

},
"height2m": {

"requested": "",
"stored_direction": "increasing",
"z_factors": "",
"positive": "up",
"must_have_bounds": "no",
"valid_min": "1.0",
"requested_bounds": "",
"z_bounds_factors": "",
"bounds_values": "",
"long_name": "height",
"standard_name": "height",
"value": "2.0",
"out_name": "height",
"type": "double",
"units": "m",
"formula": "",
"climatology": "",
"tolerance": "",
"valid_max": "10.0",
"axis": "Z"

},
"latitude": {

"requested": "",
"stored_direction": "increasing",
"z_factors": "",
"positive": "",
"must_have_bounds": "yes",
"valid_min": "-90.0",
"requested_bounds": "",
"z_bounds_factors": "",
"bounds_values": "",
"long_name": "latitude",
"standard_name": "latitude",
"value": "",
"out_name": "lat",
"type": "double",
"units": "degrees_north",
"formula": "",
"climatology": "",
"tolerance": "",
"valid_max": "90.0",

"axis": "Y"
},
"longitude": {

"requested": "",
"stored_direction": "increasing",
"z_factors": "",
"positive": "",
"must_have_bounds": "yes",
"valid_min": "0.0",
"requested_bounds": "",
"z_bounds_factors": "",
"bounds_values": "",
"long_name": "longitude",
"standard_name": "longitude",
"value": "",
"out_name": "lon",
"type": "double",
"units": "degrees_east",
"formula": "",
"climatology": "",
"tolerance": "",
"valid_max": "360.0",
"axis": "X"

},
"time": {

"requested": "",
"stored_direction": "increasing",
"z_factors": "",
"positive": "",
"must_have_bounds": "yes",
"valid_min": "",
"requested_bounds": "",
"z_bounds_factors": "",
"bounds_values": "",
"long_name": "time",
"standard_name": "time",
"value": "",
"out_name": "time",
"type": "double",
"units": "days since ?",
"formula": "",
"climatology": "",
"tolerance": "",
"valid_max": "",
"axis": "T"

}
},

variable_entry

"variable_entry": {
"rsutcs": {

"comment": "",
"dimensions": "longitude latitude time",
"positive": "up",
"valid_min": "0",
"long_name": "TOA Outgoing Clear-Sky Shortwave Radiation",
"standard_name": "toa_outgoing_shortwave_flux_assuming_clear_sky",
"modeling_realm": "atmos",
"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "54.7",
"units": "W m-2",
"out_name": "rsutcs",
"type": "real",
"valid_max": "444",
"ok_max_mean_abs": "73.36"

},
"tas": {

"comment": "near-surface (usually, 2 meter) air temperature",
"dimensions": "longitude latitude time height2m",
"positive": "",
"valid_min": "180.6",
"long_name": "Near-Surface Air Temperature",
"standard_name": "air_temperature",
"modeling_realm": "atmos",
"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "262.4",
"units": "K",
"out_name": "tas",
"type": "real",
"valid_max": "335.1",
"ok_max_mean_abs": "293"

},
"tasforecast": {

"comment": "near-surface (usually, 2 meter) air temperature",
"dimensions": "longitude latitude time height2m forecast",
"positive": "",
"valid_min": "180.6",
"long_name": "Near-Surface Air Temperature",
"standard_name": "air_temperature",
"modeling_realm": "atmos",
"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "262.4",
"units": "K",

"out_name": "tas",
"type": "real",
"valid_max": "335.1",
"ok_max_mean_abs": "293"

},
"rldscs": {

"comment": "",
"dimensions": "longitude latitude time",
"positive": "down",
"valid_min": "33.55",
"long_name": "Surface Downwelling Clear-Sky Longwave Radiation",
"standard_name": "surface_downwelling_longwave_flux_in_air_assuming_clear_sky",
"modeling_realm": "atmos",
"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "238.6",
"units": "W m-2",
"out_name": "rldscs",
"type": "real",
"valid_max": "543.6",
"ok_max_mean_abs": "293.8"

},
"n2oglobal": {

"comment": "",
"dimensions": "time",
"positive": "",
"valid_min": "",
"long_name": "Global Mean Mole Fraction of N2O",
"standard_name": "mole_fraction_of_nitrous_oxide_in_air",
"modeling_realm": "atmos atmosChem",
"cell_measures": "time: mean",
"cell_methods": "",
"ok_min_mean_abs": "",
"units": "1e-09",
"out_name": "n2oglobal",
"type": "real",
"valid_max": "",
"ok_max_mean_abs": ""

},
"ts": {

"comment": "'skin' temperature (i.e., SST for open ocean)",
"dimensions": "longitude latitude time",
"positive": "",
"valid_min": "176.8",
"long_name": "Surface Temperature",
"standard_name": "surface_temperature",
"modeling_realm": "atmos",

"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "262.8",
"units": "K",
"out_name": "ts",
"type": "real",
"valid_max": "339.6",
"ok_max_mean_abs": "293.3"

},
"clt": {

"comment": "cloud area fraction",
"dimensions": "longitude latitude time",
"positive": "",
"valid_min": "-0.0001822",
"long_name": "Total Cloud Fraction",
"standard_name": "cloud_area_fraction_in_atmosphere_layer",
"modeling_realm": "atmos",
"cell_measures": "time: mean",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "39.37",
"units": "1.0",
"out_name": "clt",
"type": "real",
"valid_max": "105",
"ok_max_mean_abs": "84.98"

},
"tasmax": {

"comment": "maximum near-surface (usually, 2 meter) air temperature (add cell_met
hod attribute 'time: max')",

"dimensions": "longitude latitude time height2m",
"positive": "",
"valid_min": "181.9",
"long_name": "Daily Maximum Near-Surface Air Temperature",
"standard_name": "air_temperature",
"modeling_realm": "atmos",
"cell_measures": "time: maximum within days time: mean over days",
"cell_methods": "area: areacella",
"ok_min_mean_abs": "264.9",
"units": "K",
"out_name": "tasmax",
"type": "real",
"valid_max": "341.9",
"ok_max_mean_abs": "294"

}
}

CMIP6 Global Attributes
CMIP6 Global Attributes

• variant_label

• activity_id

• branch_method

• Conventions

• creation_date

• mip_era

• data_specs_version

• experiment_id

• experiment

• forcing_index

• further_info_url

• frequency

• grid

• grid_label

• grid_resolution

• initialization_index

• institution

• institution_id

• license

• physics_index

• product

• realization_index

• realm

• variant_label

• source

• source_id

• source_type

• sub_experiment

• sub_experiment_id

• table_id

• tracking_id

• variable_id

CMIP6 User Input
Notes

1. Keys beginning with character _ will not be written in netCDF file as attribute. They can
be use for template filename of template path.

2. Keys beginning with charachter # can be used as comment.

CMIP6 CMOR User Input
CMIP6_global_attributes_filenames_CVs.doc 

• _control_vocabulary_file:”Specify Control Vocabulary file name”
• _cmip6_option: “used to trigger validation for CMIP6 only.”
• activity_id: “Specify an activity PMIP, GeoMIP”
• output: “Output Path where files are written – must be created by the user.”
• experiment_id: “Correspond to id found in "_control_vocabulary_file"”
• source_type: “type of model used”,
• sub_experiment: “description of sub-experiment”,
• sub_experiment_id: “none”,
• parent_sub_experiment_id:
• parent_mip_era:
• mip_era:
• institution:
• source:
• calendar:
• realization_index:
• initialization_index:
• physics_index:
• forcing_index:
• *contact *:

https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk
https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk

• history:
• comment:
• references:
• institution_id:
• model_id:
• forcing:
• parent_variant_label:
• parent_experiment_id:
• branch_time:
• parent_activity_id:
• parent_source_id:
• branch_method:
• branch_time_in_child:
• branch_time_in_parent:
• branch_time_units_in_parent:
• further_info_url: “http://furtherinfo.es-doc.org//",
• grid:
• grid_label:
• grid_resolution:
• run_variant:
• source_id:
• output_path_template: “<table>",
• output_file_template: “<table>",
• license: “One of 2 licenses: —– CMIP6 model data produced by is licensed under a

Creative Commons Attribution 'NonCommercial Share Alike' 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). Use of the data should be acknowledged
following guidelines found at <what URL???> The data is hosted via the Earth System
Grid Federation. Permissions beyond the scope of this license may be available at
http://pcmdi.org/cmip5/terms-of-use. Individuals using this data should register at ??? to
receive notice of selected categories of errata and updates. Further information about
this data, including some limitations, can be found at ???. The data producers and data

providers make no warranty, either express or implied, including but not limited to,
warranties of merchantability and fitness for a particular purpose. All liabilities arising
from the supply of the information (including any liability arising in negligence) are
excluded to the fullest extent permitted by law. "

Appendix A
Critical Errors
The following errors are considered as CRITICAL and will cause a CMOR code to stop.

1. Calling a CMOR function before running cmor_setup
2. NetCDF version is neither 3.6.3 or 4.1 or greater
3. Udunits could not parse units
4. Incompatible units
5. Udunits could not create a converter
6. Logfile could not be open for writing
7. Output directory does not exist
8. Output directory is not a directory
9. User does not have read/write privileges on the output directory

10. Wrong value for error_mode
11. wrong value for netCDF mode
12. error reading udunits system
13. NetCDF could not set variable attribute
14. Dataset does not have one of the required attributes (required attributes can be

defined in the MIP table)
15. Required global attribute is missing
16. If CMIP5 project: source attributes does not start with model_id attribute.
17. Forcing dataset attribute is not valid
18. Leap_year defined with invalid leap_month
19. Invalid leap month (<1 or >12)
20. Leap month defined but no leap year
21. Negative realization number
22. Zfactor variable not defined when needed

23. Zfactor defined w/o values and NOT time dependent.
24. Variable has axis defined with formula terms depending on axis that are not part of the

variable
25. NetCDF error when creating zfactor variable
26. NetCDF Error defining compression parameters
27. Calling cmor_write with an invalid variable id
28. Could not create path structure
29. “variable id” contains a “_” or a ‘-‘ this means bad MIP table.
30. “file_suffix” contains a “_”
31. Could not rename the file you’re trying to append to.
32. Trying to write an “Associated variable” before the variable itself
33. Output file exists and you’re not in append/replace mode
34. NetCDF Error opening file for appending
35. NetCDF could not find time dimension in a file onto which you want to append
36. NetCDF could not figure out the length time dimension in a file onto which you want to

append
37. NetCDF could not find your variable while appending to a file
38. NetCDF could not find time dimension in the variable onto which you’re trying to

append
39. NetCDF could not find time bounds in the variable onto which you’re trying to append
40. NetCDF mode got corrupted.
41. NetCDF error creating file
42. NetCDF error putting file in definition mode
43. NetCDF error writing file global attribute
44. NetCDF error creating dimension in file
45. NetCDF error creating variable
46. NetCDF error writing variable attribute
47. NetCDF error setting chunking parameters
48. NetCDF error leaving definition mode
49. Hybrid coordinate, could not find “a” coefficient

50. Hybrid coordinate, could not find “b” coefficient
51. Hybrid coordinate, could not find “a_bnds” coefficient
52. Hybrid coordinate, could not find “b_bnds” coefficient
53. Hybrid coordinate, could not find “p0” coefficient
54. Hybrid coordinate, could not find “ap” coefficient
55. Hybrid coordinate, could not find “ap_bnds” coefficient
56. Hybrid coordinate, could not find “sigma” coefficient
57. Hybrid coordinate, could not find “sigma_bnds” coefficient
58. NetCDF writing error
59. NetCDF error closing file
60. Could not rename temporary file to its final name.
61. Cdms could not convert time values for calendar.
62. Variable does not have all required attributes (cmor_variable)
63. Reference variable is defined with “positive”, user did not pass it to cmor_variable
64. Could not allocate memory for zfactor elements
65. Udunits error freeing units
66. Udunits error freeing converter
67. Could not allocate memory for zfactor_bounds
68. Calling cmor_variable before reading in a MIP table
69. Too many variable defined (see appendix on CMOR limits)
70. Could not find variable in MIP table
71. Wrong parameter “positive” passed
72. No “positive” parameter passed to cmor_variable and it is required for this variable
73. Variable defined with too many (not enough) dimensions
74. Variable defined with axis that should not be on this variable
75. Variable defined within existing axis (wrong axis_id)
76. Defining variable with axes defined in a MIP table that is not the current one.
77. Defining a variable with too many axes (see annex on CMOR limits)
78. Defining variable with axes ids that are not valid.

79. Defining variable with grid id that is not valid.
80. Defining a variable with dimensions that are not part of the MIP table (except for var

named “latitude” and “longitude”, since they could have grid axes defined in another
MIP table)

81. Trying to retrieve length of time for a variable defined w/o time length
82. Trying to retrieve variable shape into an array of wrong rank (Fortran only really)
83. Calling cmor_write with time values for a timeless variable
84. Cannot allocate memory for temporary array to write
85. Invalid absolute mean for data written (lower or greater by one order of magintudethan

what the MIP table allows)
86. Calling cmor_write with time values when they have already been defined with

cmor_axis when creating time axis
87. Cannot allocate memory to store time values
88. Cannot allocate memory to store time bounds values
89. Time values are not monotonic
90. Calling cmor_write w/o time values when no values were defined via cmor_axis when

creating time axis
91. Time values already written in file
92. Time axis units do not contain “since” word (cmor_axis)
93. Invalid data type for time values (ok are ‘f’,’l’,’i’,’d’)
94. Time values are not within time bounds
95. Non monotonic time bounds
96. Longitude axis spread over 360 degrees.
97. Overlapping bound values (except for climatological data)
98. bounds and axis values are not stored in the same order
99. requested value for axis not present

100. approximate time axis interval much greater (>20%) than the one defined in your MIP
table

101. calling cmor_axis before loading a MIP table
102. too many axes defined (see appendix on CMOR limits)
103. could not find reference axis name in current MIP table

104. output axis needs to be standard_hybrid_sigma and input axis is not one of :
“standard_hybrid_sigma”, “alternate_hybrid_sigma”, “standard_sigma”

105. MIP table requires to convert axis to unknown type
106. requested “region” not present on axis
107. axis (with bounds) values are in invalid type (valid are: ‘f’,’d’,’l’,’i’)
108. requested values already checked but stored internally, could be bad user cleanup
109. MIP table defined for version of CMOR greater than the library you’re using
110. too many experiments defined in MIP table (see appendix on CMOR limits)
111. cmor_set_table used with invalid table_id
112. MIP table has too many axes defined in it (see appendix on CMOR limits)
113. MIP table has too many variables defined in it (see appendix on CMOR limits)
114. MIP table has too many mappings defined in it (see appendix on CMOR limits)
115. MIP table defines the same mapping twice
116. grid mapping has too many parameters (see appendix on CMOR limits)
117. grid has different number of axes than what grid_mapping prescribes.
118. Could not find all the axes required by grid_mapping
119. Call to cmor_grid with axis that are not created yet via cmor_axis
120. Too many grids defined (see appendix on cmor_limits)
121. Call to cmor_grid w/o latitude array
122. Call to cmor_grid w/o longitude array

Appendix B
Limits in cmor
The following are defined in cmor.h
#define CMOR_MAX_STRING 1024
#define CMOR_DEF_ATT_STR_LEN 256
#define CMOR_MAX_ELEMENTS 500
#define CMOR_MAX_AXES CMOR_MAX_ELEMENTS*3
#define CMOR_MAX_VARIABLES CMOR_MAX_ELEMENTS
#define CMOR_MAX_GRIDS 100
#define CMOR_MAX_DIMENSIONS 7
#define CMOR_MAX_ATTRIBUTES 100
#define CMOR_MAX_ERRORS 10
#define CMOR_MAX_TABLES 10
#define CMOR_MAX_GRID_ATTRIBUTES 25

Contact us
CMOR3 issues
https://github.com/PCMDI/cmor/issues 

CMIP6 table issues
https://github.com/PCMDI/cmip6-cmor-tables/issues 

http://dreq01.vanillaforums.com/categories/cmip6-issues 

CMOR3 documentations issues
https://github.com/PCMDI/cmor3_documentation/issues 

Mailing list
cmor@listserv.llnl.gov (mailto:cmor@listserv.llnl.gov)

https://github.com/PCMDI/cmor/issues
https://github.com/PCMDI/cmor/issues
https://github.com/PCMDI/cmip6-cmor-tables/issues
https://github.com/PCMDI/cmip6-cmor-tables/issues
http://dreq01.vanillaforums.com/categories/cmip6-issues
http://dreq01.vanillaforums.com/categories/cmip6-issues
https://github.com/PCMDI/cmor3_documentation/issues
https://github.com/PCMDI/cmor3_documentation/issues
mailto:cmor@listserv.llnl.gov

	
	
	Table of Contents
	Getting started overview
	Design Considerations and Overview
	Preliminary notes

	CMOR Application program interface (API)
	cmor_setup()
	cmor_dataset_json()
	cmor_set_cur_dataset_attribute()
	cmor_get_cur_dataset_attribute()
	cmor_has_cur_dataset_attribute()
	cmor_load_table()
	cmor_set_table()
	cmor_axis()
	cmor_grid()
	cmor_set_grid_mapping()
	cmor_time_varying_grid_coordinate()
	cmor_zfactor()
	cmor_variable()
	cmor_set_variable_attribute()
	cmor_get_variable_attribute()
	cmor_has_variable_attribute()
	cmor_create_output_path()
	cmor_write()
	cmor_close()

	Acknowledgements
	Acknowledgements

	Anaconda installation
	All Platforms System Requirements
	Bypassing firewalls
	Installing
	Conda environment

	Github Installation
	Environment setup
	Compile Dependencies
	Retrieve sources
	build libuuid
	build udnits2
	build hdf5
	build netcdf4

	Build cmor

	Example Python
	CMOR user Input
	Python source code

	Fortran Example
	CMOR user input
	Fortran source code

	C example
	CMOR user input
	C source code

	Control Vocabulary (CMIP6)
	CMIP6 Control vocabulary minimum requirements.
	To register, activities, sources or institutions
	CMIP6 required global attributes
	Registered activities
	Registered sources
	Registered institutions
	valid grids
	Registered experiments

	CMIP6 Table Excerpt
	Header
	axis_entry
	variable_entry

	CMIP6 Global Attributes
	CMIP6 Global Attributes

	CMIP6 User Input
	Notes
	CMIP6 CMOR User Input

	Appendix A
	Critical Errors

	Appendix B
	Limits in cmor

	Contact us
	CMOR3 issues
	CMIP6 table issues
	CMOR3 documentations issues
	Mailing list

